[WebAssembly] Enhanced register stackification

This patch revamps the RegStackifier pass with a new tree traversal mechanism,
enabling three major new features:

 - Stackification of values with multiple uses, using the result value of set_local
 - More aggressive stackification of instructions with side effects
 - Reordering operands in commutative instructions to enable more stackification.

llvm-svn: 259009
This commit is contained in:
Dan Gohman 2016-01-28 01:22:44 +00:00
parent 68851f60b4
commit 2e8acd83fd
9 changed files with 497 additions and 100 deletions

View File

@ -343,6 +343,14 @@ public:
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_end());
}
iterator_range<mop_iterator> explicit_uses() {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_begin() + getNumExplicitOperands() );
}
iterator_range<const_mop_iterator> explicit_uses() const {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_begin() + getNumExplicitOperands() );
}
/// Returns the number of the operand iterator \p I points to.
unsigned getOperandNo(const_mop_iterator I) const {

View File

@ -32,12 +32,6 @@ Interesting work that remains to be done:
//===---------------------------------------------------------------------===//
set_local instructions have a return value. We should (a) model this,
and (b) write optimizations which take advantage of it. Keep in mind that
many set_local instructions are implicit!
//===---------------------------------------------------------------------===//
Br, br_if, and tableswitch instructions can support having a value on the
expression stack across the jump (sometimes). We should (a) model this, and
(b) extend the stackifier to utilize it.
@ -87,3 +81,17 @@ Find a clean way to fix the problem which leads to the Shrink Wrapping pass
being run after the WebAssembly PEI pass.
//===---------------------------------------------------------------------===//
When setting multiple local variables to the same constant, we currently get
code like this:
i32.const $4=, 0
i32.const $3=, 0
It could be done with a smaller encoding like this:
i32.const $push5=, 0
tee_local $push6=, $4=, $pop5
copy_local $3=, $pop6
//===---------------------------------------------------------------------===//

View File

@ -15,6 +15,7 @@
#include "WebAssemblyInstrInfo.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@ -75,6 +76,21 @@ void WebAssemblyInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
.addReg(SrcReg, KillSrc ? RegState::Kill : 0);
}
MachineInstr *
WebAssemblyInstrInfo::commuteInstructionImpl(MachineInstr *MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
// If the operands are stackified, we can't reorder them.
WebAssemblyFunctionInfo &MFI =
*MI->getParent()->getParent()->getInfo<WebAssemblyFunctionInfo>();
if (MFI.isVRegStackified(MI->getOperand(OpIdx1).getReg()) ||
MFI.isVRegStackified(MI->getOperand(OpIdx2).getReg()))
return nullptr;
// Otherwise use the default implementation.
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
// Branch analysis.
bool WebAssemblyInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,

View File

@ -40,6 +40,9 @@ public:
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
DebugLoc DL, unsigned DestReg, unsigned SrcReg,
bool KillSrc) const override;
MachineInstr *commuteInstructionImpl(MachineInstr *MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const override;
bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,

View File

@ -107,15 +107,8 @@ defm : ARGUMENT<F64>;
let Defs = [ARGUMENTS] in {
// get_local and set_local are not generated by instruction selection; they
// are implied by virtual register uses and defs in most contexts. However,
// they are explicitly emitted for special purposes.
// are implied by virtual register uses and defs.
multiclass LOCAL<WebAssemblyRegClass vt> {
def GET_LOCAL_#vt : I<(outs vt:$res), (ins i32imm:$regno), [],
"get_local\t$res, $regno">;
// TODO: set_local returns its operand value
def SET_LOCAL_#vt : I<(outs), (ins i32imm:$regno, vt:$src), [],
"set_local\t$regno, $src">;
// COPY_LOCAL is not an actual instruction in wasm, but since we allow
// get_local and set_local to be implicit, we can have a COPY_LOCAL which
// is actually a no-op because all the work is done in the implied
@ -123,6 +116,13 @@ multiclass LOCAL<WebAssemblyRegClass vt> {
let isAsCheapAsAMove = 1 in
def COPY_LOCAL_#vt : I<(outs vt:$res), (ins vt:$src), [],
"copy_local\t$res, $src">;
// TEE_LOCAL is similar to COPY_LOCAL, but writes two copies of its result.
// Typically this would be used to stackify one result and write the other
// result to a local.
let isAsCheapAsAMove = 1 in
def TEE_LOCAL_#vt : I<(outs vt:$res, vt:$also), (ins vt:$src), [],
"tee_local\t$res, $also, $src">;
}
defm : LOCAL<I32>;
defm : LOCAL<I64>;

View File

@ -27,6 +27,8 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
@ -44,12 +46,13 @@ class WebAssemblyRegStackify final : public MachineFunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreservedID(MachineDominatorsID);
AU.addPreservedID(LiveVariablesID);
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@ -89,8 +92,8 @@ static void ImposeStackOrdering(MachineInstr *MI) {
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
AliasAnalysis &AA, LiveIntervals &LIS,
MachineRegisterInfo &MRI) {
AliasAnalysis &AA, const LiveIntervals &LIS,
const MachineRegisterInfo &MRI) {
assert(Def->getParent() == Insert->getParent());
bool SawStore = false, SawSideEffects = false;
MachineBasicBlock::const_iterator D(Def), I(Insert);
@ -133,6 +136,250 @@ static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
!(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
}
/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
const MachineBasicBlock &MBB,
const MachineRegisterInfo &MRI,
const MachineDominatorTree &MDT) {
for (const MachineOperand &Use : MRI.use_operands(Reg)) {
if (&Use == &OneUse)
continue;
const MachineInstr *UseInst = Use.getParent();
const MachineInstr *OneUseInst = OneUse.getParent();
if (UseInst->getOpcode() == TargetOpcode::PHI) {
// Test that the PHI use, which happens on the CFG edge rather than
// within the PHI's own block, is dominated by the one selected use.
const MachineBasicBlock *Pred =
UseInst->getOperand(&Use - &UseInst->getOperand(0) + 1).getMBB();
if (!MDT.dominates(&MBB, Pred))
return false;
} else if (UseInst == OneUseInst) {
// Another use in the same instruction. We need to ensure that the one
// selected use happens "before" it.
if (&OneUse > &Use)
return false;
} else {
// Test that the use is dominated by the one selected use.
if (!MDT.dominates(OneUseInst, UseInst))
return false;
}
}
return true;
}
/// Get the appropriate tee_local opcode for the given register class.
static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) {
if (RC == &WebAssembly::I32RegClass)
return WebAssembly::TEE_LOCAL_I32;
if (RC == &WebAssembly::I64RegClass)
return WebAssembly::TEE_LOCAL_I64;
if (RC == &WebAssembly::F32RegClass)
return WebAssembly::TEE_LOCAL_F32;
if (RC == &WebAssembly::F64RegClass)
return WebAssembly::TEE_LOCAL_F64;
llvm_unreachable("Unexpected register class");
}
/// A single-use def in the same block with no intervening memory or register
/// dependencies; move the def down and nest it with the current instruction.
static MachineInstr *MoveForSingleUse(unsigned Reg, MachineInstr *Def,
MachineBasicBlock &MBB,
MachineInstr *Insert, LiveIntervals &LIS,
WebAssemblyFunctionInfo &MFI) {
MBB.splice(Insert, &MBB, Def);
LIS.handleMove(Def);
MFI.stackifyVReg(Reg);
ImposeStackOrdering(Def);
return Def;
}
/// A trivially cloneable instruction; clone it and nest the new copy with the
/// current instruction.
static MachineInstr *
RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def,
MachineBasicBlock &MBB, MachineInstr *Insert,
LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII,
const WebAssemblyRegisterInfo *TRI) {
unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
Op.setReg(NewReg);
MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert));
LIS.InsertMachineInstrInMaps(Clone);
LIS.createAndComputeVirtRegInterval(NewReg);
MFI.stackifyVReg(NewReg);
ImposeStackOrdering(Clone);
// If that was the last use of the original, delete the original.
// Otherwise shrink the LiveInterval.
if (MRI.use_empty(Reg)) {
SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
LIS.removeVRegDefAt(LIS.getInterval(Reg), Idx);
LIS.removeInterval(Reg);
LIS.RemoveMachineInstrFromMaps(Def);
Def->eraseFromParent();
} else {
LIS.shrinkToUses(&LIS.getInterval(Reg));
}
return Clone;
}
/// A multiple-use def in the same block with no intervening memory or register
/// dependencies; move the def down, nest it with the current instruction, and
/// insert a tee_local to satisfy the rest of the uses. As an illustration,
/// rewrite this:
///
/// Reg = INST ... // Def
/// INST ..., Reg, ... // Insert
/// INST ..., Reg, ...
/// INST ..., Reg, ...
///
/// to this:
///
/// Reg = INST ... // Def (to become the new Insert)
/// TeeReg, NewReg = TEE_LOCAL_... Reg
/// INST ..., TeeReg, ... // Insert
/// INST ..., NewReg, ...
/// INST ..., NewReg, ...
///
/// with Reg and TeeReg stackified. This eliminates a get_local from the
/// resulting code.
static MachineInstr *MoveAndTeeForMultiUse(
unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
MBB.splice(Insert, &MBB, Def);
LIS.handleMove(Def);
const auto *RegClass = MRI.getRegClass(Reg);
unsigned NewReg = MRI.createVirtualRegister(RegClass);
unsigned TeeReg = MRI.createVirtualRegister(RegClass);
MRI.replaceRegWith(Reg, NewReg);
MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
TII->get(GetTeeLocalOpcode(RegClass)), TeeReg)
.addReg(NewReg, RegState::Define)
.addReg(Reg);
Op.setReg(TeeReg);
Def->getOperand(0).setReg(Reg);
LIS.InsertMachineInstrInMaps(Tee);
LIS.shrinkToUses(&LIS.getInterval(Reg));
LIS.createAndComputeVirtRegInterval(NewReg);
LIS.createAndComputeVirtRegInterval(TeeReg);
MFI.stackifyVReg(Reg);
MFI.stackifyVReg(TeeReg);
ImposeStackOrdering(Def);
ImposeStackOrdering(Tee);
return Def;
}
namespace {
/// A stack for walking the tree of instructions being built, visiting the
/// MachineOperands in DFS order.
class TreeWalkerState {
typedef MachineInstr::mop_iterator mop_iterator;
typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
typedef iterator_range<mop_reverse_iterator> RangeTy;
SmallVector<RangeTy, 4> Worklist;
public:
explicit TreeWalkerState(MachineInstr *Insert) {
const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
if (Range.begin() != Range.end())
Worklist.push_back(reverse(Range));
}
bool Done() const { return Worklist.empty(); }
MachineOperand &Pop() {
RangeTy &Range = Worklist.back();
MachineOperand &Op = *Range.begin();
Range = drop_begin(Range, 1);
if (Range.begin() == Range.end())
Worklist.pop_back();
assert((Worklist.empty() ||
Worklist.back().begin() != Worklist.back().end()) &&
"Empty ranges shouldn't remain in the worklist");
return Op;
}
/// Push Instr's operands onto the stack to be visited.
void PushOperands(MachineInstr *Instr) {
const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
if (Range.begin() != Range.end())
Worklist.push_back(reverse(Range));
}
/// Some of Instr's operands are on the top of the stack; remove them and
/// re-insert them starting from the beginning (because we've commuted them).
void ResetTopOperands(MachineInstr *Instr) {
assert(HasRemainingOperands(Instr) &&
"Reseting operands should only be done when the instruction has "
"an operand still on the stack");
Worklist.back() = reverse(Instr->explicit_uses());
}
/// Test whether Instr has operands remaining to be visited at the top of
/// the stack.
bool HasRemainingOperands(const MachineInstr *Instr) const {
if (Worklist.empty())
return false;
const RangeTy &Range = Worklist.back();
return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
}
};
/// State to keep track of whether commuting is in flight or whether it's been
/// tried for the current instruction and didn't work.
class CommutingState {
/// There are effectively three states: the initial state where we haven't
/// started commuting anything and we don't know anything yet, the tenative
/// state where we've commuted the operands of the current instruction and are
/// revisting it, and the declined state where we've reverted the operands
/// back to their original order and will no longer commute it further.
bool TentativelyCommuting;
bool Declined;
/// During the tentative state, these hold the operand indices of the commuted
/// operands.
unsigned Operand0, Operand1;
public:
CommutingState() : TentativelyCommuting(false), Declined(false) {}
/// Stackification for an operand was not successful due to ordering
/// constraints. If possible, and if we haven't already tried it and declined
/// it, commute Insert's operands and prepare to revisit it.
void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
const WebAssemblyInstrInfo *TII) {
if (TentativelyCommuting) {
assert(!Declined &&
"Don't decline commuting until you've finished trying it");
// Commuting didn't help. Revert it.
TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
TentativelyCommuting = false;
Declined = true;
} else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) {
// Tentatively commute the operands and try again.
TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
TreeWalker.ResetTopOperands(Insert);
TentativelyCommuting = true;
Declined = false;
}
}
}
/// Stackification for some operand was successful. Reset to the default
/// state.
void Reset() {
TentativelyCommuting = false;
Declined = false;
}
};
} // end anonymous namespace
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
@ -144,6 +391,7 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
LiveIntervals &LIS = getAnalysis<LiveIntervals>();
// Walk the instructions from the bottom up. Currently we don't look past
@ -165,20 +413,36 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in LIFO order.
bool AnyStackified = false;
for (MachineOperand &Op : reverse(Insert->uses())) {
CommutingState Commuting;
TreeWalkerState TreeWalker(Insert);
while (!TreeWalker.Done()) {
MachineOperand &Op = TreeWalker.Pop();
// We're only interested in explicit virtual register operands.
if (!Op.isReg() || Op.isImplicit() || !Op.isUse())
if (!Op.isReg())
continue;
unsigned Reg = Op.getReg();
// Only consider registers with a single definition.
// TODO: Eventually we may relax this, to stackify phi transfers.
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
if (!Def)
assert(Op.isUse() && "explicit_uses() should only iterate over uses");
assert(!Op.isImplicit() &&
"explicit_uses() should only iterate over explicit operands");
if (TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
// Identify the definition for this register at this point. Most
// registers are in SSA form here so we try a quick MRI query first.
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
if (!Def) {
// MRI doesn't know what the Def is. Try asking LIS.
const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
LIS.getInstructionIndex(Insert));
if (!ValNo)
continue;
Def = LIS.getInstructionFromIndex(ValNo->def);
if (!Def)
continue;
}
// Don't nest an INLINE_ASM def into anything, because we don't have
// constraints for $pop outputs.
if (Def->getOpcode() == TargetOpcode::INLINEASM)
@ -196,59 +460,52 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
Def->getOpcode() == WebAssembly::ARGUMENT_F64)
continue;
if (MRI.hasOneUse(Reg) && Def->getParent() == &MBB &&
IsSafeToMove(Def, Insert, AA, LIS, MRI)) {
// A single-use def in the same block with no intervening memory or
// register dependencies; move the def down and nest it with the
// current instruction.
// TODO: Stackify multiple-use values, taking advantage of set_local
// returning its result.
Changed = true;
AnyStackified = true;
MBB.splice(Insert, &MBB, Def);
LIS.handleMove(Def);
MFI.stackifyVReg(Reg);
ImposeStackOrdering(Def);
Insert = Def;
// Decide which strategy to take. Prefer to move a single-use value
// over cloning it, and prefer cloning over introducing a tee_local.
// For moving, we require the def to be in the same block as the use;
// this makes things simpler (LiveIntervals' handleMove function only
// supports intra-block moves) and it's MachineSink's job to catch all
// the sinking opportunities anyway.
bool SameBlock = Def->getParent() == &MBB;
bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI);
if (CanMove && MRI.hasOneUse(Reg)) {
Insert = MoveForSingleUse(Reg, Def, MBB, Insert, LIS, MFI);
} else if (Def->isAsCheapAsAMove() &&
TII->isTriviallyReMaterializable(Def, &AA)) {
// A trivially cloneable instruction; clone it and nest the new copy
// with the current instruction.
Changed = true;
AnyStackified = true;
unsigned OldReg = Def->getOperand(0).getReg();
unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
Op.setReg(NewReg);
MachineInstr *Clone =
&*std::prev(MachineBasicBlock::instr_iterator(Insert));
LIS.InsertMachineInstrInMaps(Clone);
LIS.createAndComputeVirtRegInterval(NewReg);
MFI.stackifyVReg(NewReg);
ImposeStackOrdering(Clone);
Insert = Clone;
// If that was the last use of the original, delete the original.
// Otherwise shrink the LiveInterval.
if (MRI.use_empty(OldReg)) {
SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
LIS.removeVRegDefAt(LIS.getInterval(OldReg), Idx);
LIS.removeInterval(OldReg);
LIS.RemoveMachineInstrFromMaps(Def);
Def->eraseFromParent();
} else {
LIS.shrinkToUses(&LIS.getInterval(OldReg));
}
Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI,
MRI, TII, TRI);
} else if (CanMove &&
OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT)) {
Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
MRI, TII);
} else {
// We failed to stackify the operand. If the problem was ordering
// constraints, Commuting may be able to help.
if (!CanMove && SameBlock)
Commuting.MaybeCommute(Insert, TreeWalker, TII);
// Proceed to the next operand.
continue;
}
// We stackified an operand. Add the defining instruction's operands to
// the worklist stack now to continue to build an ever deeper tree.
Commuting.Reset();
TreeWalker.PushOperands(Insert);
}
if (AnyStackified)
// If we stackified any operands, skip over the tree to start looking for
// the next instruction we can build a tree on.
if (Insert != &*MII) {
ImposeStackOrdering(&*MII);
MII = std::prev(
make_reverse_iterator(MachineBasicBlock::iterator(Insert)));
Changed = true;
}
}
}
// If we used EXPR_STACK anywhere, add it to the live-in sets everywhere
// so that it never looks like a use-before-def.
// If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so
// that it never looks like a use-before-def.
if (Changed) {
MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
for (MachineBasicBlock &MBB : MF)
@ -263,23 +520,25 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
for (MachineOperand &MO : reverse(MI.explicit_operands())) {
if (!MO.isReg())
continue;
unsigned VReg = MO.getReg();
unsigned Reg = MO.getReg();
// Don't stackify physregs like SP or FP.
if (!TargetRegisterInfo::isVirtualRegister(VReg))
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (MFI.isVRegStackified(VReg)) {
if (MFI.isVRegStackified(Reg)) {
if (MO.isDef())
Stack.push_back(VReg);
Stack.push_back(Reg);
else
assert(Stack.pop_back_val() == VReg);
assert(Stack.pop_back_val() == Reg &&
"Register stack pop should be paired with a push");
}
}
}
// TODO: Generalize this code to support keeping values on the stack across
// basic block boundaries.
assert(Stack.empty());
assert(Stack.empty() &&
"Register stack pushes and pops should be balanced");
}
#endif

View File

@ -979,7 +979,7 @@ bb6:
; OPT-LABEL: test11:
; OPT: block{{$}}
; OPT-NEXT: block{{$}}
; OPT: br_if $0, 0{{$}}
; OPT: br_if $pop{{[0-9]+}}, 0{{$}}
; OPT-NEXT: block{{$}}
; OPT-NOT: block
; OPT: br_if $0, 0{{$}}
@ -1121,31 +1121,33 @@ bb7:
; CHECK-LABEL: test13:
; CHECK-NEXT: .local i32{{$}}
; CHECK: block{{$}}
; CHECK: br_if $pop4, 0{{$}}
; CHECK: br_if $pop5, 0{{$}}
; CHECK-NEXT: return{{$}}
; CHECK-NEXT: .LBB22_2:
; CHECK-NEXT: end_block{{$}}
; CHECK: block{{$}}
; CHECK-NEXT: br_if $0, 0{{$}}
; CHECK-NEXT: i32.const $push3=, 0{{$}}
; CHECK-NEXT: br_if $pop3, 0{{$}}
; CHECK: .LBB22_4:
; CHECK-NEXT: end_block{{$}}
; CHECK: block{{$}}
; CHECK: br_if $pop6, 0{{$}}
; CHECK: br_if $pop7, 0{{$}}
; CHECK-NEXT: end_block{{$}}
; CHECK-NEXT: unreachable{{$}}
; OPT-LABEL: test13:
; OPT-NEXT: .local i32{{$}}
; OPT: block{{$}}
; OPT: br_if $pop4, 0{{$}}
; OPT: br_if $pop5, 0{{$}}
; OPT-NEXT: return{{$}}
; OPT-NEXT: .LBB22_2:
; OPT-NEXT: end_block{{$}}
; OPT: block{{$}}
; OPT-NEXT: br_if $0, 0{{$}}
; OPT-NEXT: i32.const $push3=, 0{{$}}
; OPT-NEXT: br_if $pop3, 0{{$}}
; OPT: .LBB22_4:
; OPT-NEXT: end_block{{$}}
; OPT: block{{$}}
; OPT: br_if $pop6, 0{{$}}
; OPT: br_if $pop7, 0{{$}}
; OPT-NEXT: end_block{{$}}
; OPT-NEXT: unreachable{{$}}
define void @test13() noinline optnone {

View File

@ -90,17 +90,18 @@ false:
}
; Test an interesting case where the load has multiple uses and cannot
; be trivially stackified.
; be trivially stackified. However, it can be stackified with a tee_local.
; CHECK-LABEL: multiple_uses:
; CHECK-NEXT: .param i32, i32, i32{{$}}
; CHECK-NEXT: .local i32{{$}}
; CHECK-NEXT: i32.load $3=, 0($2){{$}}
; CHECK-NEXT: block{{$}}
; CHECK-NEXT: i32.ge_u $push0=, $3, $1{{$}}
; CHECK-NEXT: br_if $pop0, 0{{$}}
; CHECK-NEXT: i32.lt_u $push1=, $3, $0{{$}}
; CHECK-NEXT: i32.load $push0=, 0($2){{$}}
; CHECK-NEXT: tee_local $push3=, $3=, $pop0{{$}}
; CHECK-NEXT: i32.ge_u $push1=, $pop3, $1{{$}}
; CHECK-NEXT: br_if $pop1, 0{{$}}
; CHECK-NEXT: i32.lt_u $push2=, $3, $0{{$}}
; CHECK-NEXT: br_if $pop2, 0{{$}}
; CHECK-NEXT: i32.store $discard=, 0($2), $3{{$}}
; CHECK-NEXT: .LBB5_3:
; CHECK-NEXT: end_block{{$}}
@ -145,4 +146,102 @@ entry:
ret void
}
; Div instructions have side effects and can't be reordered, but this entire
; function should still be able to be stackified because it's already in
; tree order.
; CHECK-LABEL: div_tree:
; CHECK-NEXT: .param i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: i32.div_s $push0=, $0, $1
; CHECK-NEXT: i32.div_s $push1=, $2, $3
; CHECK-NEXT: i32.div_s $push2=, $pop0, $pop1
; CHECK-NEXT: i32.div_s $push3=, $4, $5
; CHECK-NEXT: i32.div_s $push4=, $6, $7
; CHECK-NEXT: i32.div_s $push5=, $pop3, $pop4
; CHECK-NEXT: i32.div_s $push6=, $pop2, $pop5
; CHECK-NEXT: i32.div_s $push7=, $8, $9
; CHECK-NEXT: i32.div_s $push8=, $10, $11
; CHECK-NEXT: i32.div_s $push9=, $pop7, $pop8
; CHECK-NEXT: i32.div_s $push10=, $12, $13
; CHECK-NEXT: i32.div_s $push11=, $14, $15
; CHECK-NEXT: i32.div_s $push12=, $pop10, $pop11
; CHECK-NEXT: i32.div_s $push13=, $pop9, $pop12
; CHECK-NEXT: i32.div_s $push14=, $pop6, $pop13
; CHECK-NEXT: return $pop14
define i32 @div_tree(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, i32 %i, i32 %j, i32 %k, i32 %l, i32 %m, i32 %n, i32 %o, i32 %p) {
entry:
%div = sdiv i32 %a, %b
%div1 = sdiv i32 %c, %d
%div2 = sdiv i32 %div, %div1
%div3 = sdiv i32 %e, %f
%div4 = sdiv i32 %g, %h
%div5 = sdiv i32 %div3, %div4
%div6 = sdiv i32 %div2, %div5
%div7 = sdiv i32 %i, %j
%div8 = sdiv i32 %k, %l
%div9 = sdiv i32 %div7, %div8
%div10 = sdiv i32 %m, %n
%div11 = sdiv i32 %o, %p
%div12 = sdiv i32 %div10, %div11
%div13 = sdiv i32 %div9, %div12
%div14 = sdiv i32 %div6, %div13
ret i32 %div14
}
; A simple multiple-use case.
; CHECK-LABEL: simple_multiple_use:
; CHECK-NEXT: .param i32, i32{{$}}
; CHECK-NEXT: i32.mul $push0=, $1, $0{{$}}
; CHECK-NEXT: tee_local $push1=, $0=, $pop0{{$}}
; CHECK-NEXT: call use_a@FUNCTION, $pop1{{$}}
; CHECK-NEXT: call use_b@FUNCTION, $0{{$}}
; CHECK-NEXT: return{{$}}
declare void @use_a(i32)
declare void @use_b(i32)
define void @simple_multiple_use(i32 %x, i32 %y) {
%mul = mul i32 %y, %x
call void @use_a(i32 %mul)
call void @use_b(i32 %mul)
ret void
}
; Multiple uses of the same value in one instruction.
; CHECK-LABEL: multiple_uses_in_same_insn:
; CHECK-NEXT: .param i32, i32{{$}}
; CHECK-NEXT: i32.mul $push0=, $1, $0{{$}}
; CHECK-NEXT: tee_local $push1=, $0=, $pop0{{$}}
; CHECK-NEXT: call use_2@FUNCTION, $pop1, $0{{$}}
; CHECK-NEXT: return{{$}}
declare void @use_2(i32, i32)
define void @multiple_uses_in_same_insn(i32 %x, i32 %y) {
%mul = mul i32 %y, %x
call void @use_2(i32 %mul, i32 %mul)
ret void
}
; Commute operands to achieve better stackifying.
; CHECK-LABEL: commute:
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: i32.call $push0=, red@FUNCTION{{$}}
; CHECK-NEXT: i32.call $push1=, green@FUNCTION{{$}}
; CHECK-NEXT: i32.add $push2=, $pop0, $pop1{{$}}
; CHECK-NEXT: i32.call $push3=, blue@FUNCTION{{$}}
; CHECK-NEXT: i32.add $push4=, $pop2, $pop3{{$}}
; CHECK-NEXT: return $pop4{{$}}
declare i32 @red()
declare i32 @green()
declare i32 @blue()
define i32 @commute() {
%call = call i32 @red()
%call1 = call i32 @green()
%add = add i32 %call1, %call
%call2 = call i32 @blue()
%add3 = add i32 %add, %call2
ret i32 %add3
}
!0 = !{}

View File

@ -49,12 +49,13 @@ entry:
; CHECK-NEXT: .param i32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: .local i32{{$}}
; CHECK-NEXT: i32.load $1=, 0($0){{$}}
; CHECK-NEXT: i32.const $push0=, 4{{$}}
; CHECK-NEXT: i32.add $push1=, $1, $pop0{{$}}
; CHECK-NEXT: i32.store $discard=, 0($0), $pop1{{$}}
; CHECK-NEXT: i32.load $push2=, 0($1){{$}}
; CHECK-NEXT: return $pop2{{$}}
; CHECK-NEXT: i32.load $push0=, 0($0){{$}}
; CHECK-NEXT: tee_local $push4=, $1=, $pop0{{$}}
; CHECK-NEXT: i32.const $push1=, 4{{$}}
; CHECK-NEXT: i32.add $push2=, $pop4, $pop1{{$}}
; CHECK-NEXT: i32.store $discard=, 0($0), $pop2{{$}}
; CHECK-NEXT: i32.load $push3=, 0($1){{$}}
; CHECK-NEXT: return $pop3{{$}}
define i8 @arg_i8(i8** %ap) {
entry:
%t = va_arg i8** %ap, i8
@ -71,12 +72,13 @@ entry:
; CHECK-NEXT: i32.const $push1=, 3{{$}}
; CHECK-NEXT: i32.add $push2=, $pop0, $pop1{{$}}
; CHECK-NEXT: i32.const $push3=, -4{{$}}
; CHECK-NEXT: i32.and $1=, $pop2, $pop3{{$}}
; CHECK-NEXT: i32.const $push4=, 4{{$}}
; CHECK-NEXT: i32.add $push5=, $1, $pop4{{$}}
; CHECK-NEXT: i32.store $discard=, 0($0), $pop5{{$}}
; CHECK-NEXT: i32.load $push6=, 0($1){{$}}
; CHECK-NEXT: return $pop6{{$}}
; CHECK-NEXT: i32.and $push4=, $pop2, $pop3{{$}}
; CHECK-NEXT: tee_local $push8=, $1=, $pop4{{$}}
; CHECK-NEXT: i32.const $push5=, 4{{$}}
; CHECK-NEXT: i32.add $push6=, $pop8, $pop5{{$}}
; CHECK-NEXT: i32.store $discard=, 0($0), $pop6{{$}}
; CHECK-NEXT: i32.load $push7=, 0($1){{$}}
; CHECK-NEXT: return $pop7{{$}}
define i32 @arg_i32(i8** %ap) {
entry:
%t = va_arg i8** %ap, i32