mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-11 14:16:59 +00:00
Insert code to load constants used as Call or Return arguments.
Also, note return value of a Call as an "implicitUse". llvm-svn: 720
This commit is contained in:
parent
2c19cf9a69
commit
2f08c4c828
@ -11,6 +11,7 @@
|
||||
//**************************************************************************/
|
||||
|
||||
#include "SparcInternals.h"
|
||||
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
@ -1027,8 +1028,6 @@ CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
|
||||
// Create an instruction sequence to load a constant into a register.
|
||||
// This always creates either one or two instructions.
|
||||
// If two instructions are created, the second one is returned in getMinstr2
|
||||
// The implicit virtual register used to hold the constant is returned in
|
||||
// tmpReg.
|
||||
//
|
||||
static MachineInstr*
|
||||
CreateLoadConstInstr(const TargetMachine &target,
|
||||
@ -1078,18 +1077,18 @@ CreateLoadConstInstr(const TargetMachine &target,
|
||||
// The constant actually has an integer value, so use a
|
||||
// [set; int-to-float] sequence instead of a load instruction.
|
||||
//
|
||||
TmpInstruction* tmpReg2 = NULL;
|
||||
TmpInstruction* addrReg = NULL;
|
||||
if (dval != 0.0)
|
||||
{ // First, create an integer constant of the same value as dval
|
||||
ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
|
||||
(int64_t) dval);
|
||||
// Create another TmpInstruction for the hidden integer register
|
||||
tmpReg2 = new TmpInstruction(Instruction::UserOp1, ival, NULL);
|
||||
vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
|
||||
addrReg = new TmpInstruction(Instruction::UserOp1, ival, NULL);
|
||||
vmInstr->getMachineInstrVec().addTempValue(addrReg);
|
||||
|
||||
// Create the `SET' instruction
|
||||
minstr1 = CreateIntSetInstruction((int64_t)dval, true, tmpReg2);
|
||||
tmpReg2->addMachineInstruction(minstr1);
|
||||
minstr1 = CreateIntSetInstruction((int64_t)dval, true, addrReg);
|
||||
addrReg->addMachineInstruction(minstr1);
|
||||
}
|
||||
|
||||
// In which variable do we put the second instruction?
|
||||
@ -1102,7 +1101,7 @@ CreateLoadConstInstr(const TargetMachine &target,
|
||||
instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
|
||||
else
|
||||
instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
||||
tmpReg2);
|
||||
addrReg);
|
||||
|
||||
instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
||||
dest);
|
||||
@ -1112,26 +1111,26 @@ CreateLoadConstInstr(const TargetMachine &target,
|
||||
|
||||
{
|
||||
// Make an instruction sequence to load the constant, viz:
|
||||
// SETSW <addr-of-constant>, tmpReg2
|
||||
// LOAD /*addr*/ tmpReg2, /*offset*/ 0, dest
|
||||
// SETSW <addr-of-constant>, addrReg
|
||||
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
|
||||
// set the offset field to 0.
|
||||
//
|
||||
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
|
||||
|
||||
// Create another TmpInstruction for the hidden integer register
|
||||
TmpInstruction* tmpReg2 =
|
||||
TmpInstruction* addrReg =
|
||||
new TmpInstruction(Instruction::UserOp1, val, NULL);
|
||||
vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
|
||||
vmInstr->getMachineInstrVec().addTempValue(addrReg);
|
||||
|
||||
minstr1 = new MachineInstr(SETUW);
|
||||
minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
|
||||
minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
||||
tmpReg2);
|
||||
tmpReg2->addMachineInstruction(minstr1);
|
||||
addrReg);
|
||||
addrReg->addMachineInstruction(minstr1);
|
||||
|
||||
getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
|
||||
getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
||||
tmpReg2);
|
||||
addrReg);
|
||||
getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
|
||||
zeroOffset);
|
||||
getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
|
||||
@ -1143,6 +1142,35 @@ CreateLoadConstInstr(const TargetMachine &target,
|
||||
return minstr1;
|
||||
}
|
||||
|
||||
|
||||
TmpInstruction*
|
||||
InsertCodeToLoadConstant(ConstPoolVal* opValue,
|
||||
Instruction* vmInstr,
|
||||
vector<MachineInstr*> loadConstVec,
|
||||
TargetMachine& target)
|
||||
{
|
||||
// value is constant and must be loaded into a register.
|
||||
// First, create a tmp virtual register (TmpInstruction)
|
||||
// to hold the constant.
|
||||
// This will replace the constant operand in `minstr'.
|
||||
TmpInstruction* tmpReg =
|
||||
new TmpInstruction(Instruction::UserOp1, opValue, NULL);
|
||||
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
|
||||
|
||||
MachineInstr *minstr1, *minstr2;
|
||||
minstr1 = CreateLoadConstInstr(target, vmInstr,
|
||||
opValue, tmpReg, minstr2);
|
||||
|
||||
loadConstVec.push_back(minstr1);
|
||||
if (minstr2 != NULL)
|
||||
loadConstVec.push_back(minstr2);
|
||||
|
||||
tmpReg->addMachineInstruction(loadConstVec.back());
|
||||
|
||||
return tmpReg;
|
||||
}
|
||||
|
||||
|
||||
// Special handling for constant operands:
|
||||
// -- if the constant is 0, use the hardwired 0 register, if any;
|
||||
// -- if the constant is of float or double type but has an integer value,
|
||||
@ -1157,9 +1185,9 @@ FixConstantOperands(const InstructionNode* vmInstrNode,
|
||||
unsigned numInstr,
|
||||
TargetMachine& target)
|
||||
{
|
||||
static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
|
||||
|
||||
unsigned numNew = 0;
|
||||
vector<MachineInstr*> loadConstVec;
|
||||
loadConstVec.reserve(MAX_INSTR_PER_VMINSTR);
|
||||
|
||||
Instruction* vmInstr = vmInstrNode->getInstruction();
|
||||
|
||||
for (unsigned i=0; i < numInstr; i++)
|
||||
@ -1196,23 +1224,10 @@ FixConstantOperands(const InstructionNode* vmInstrNode,
|
||||
minstr->SetMachineOperand(op, machineRegNum);
|
||||
else if (opType == MachineOperand::MO_VirtualRegister)
|
||||
{
|
||||
// value is constant and must be loaded into a register.
|
||||
// First, create a tmp virtual register (TmpInstruction)
|
||||
// to hold the constant.
|
||||
// This will replace the constant operand in `minstr'.
|
||||
TmpInstruction* tmpReg =
|
||||
new TmpInstruction(Instruction::UserOp1, opValue, NULL);
|
||||
vmInstr->getMachineInstrVec().addTempValue(tmpReg);
|
||||
InsertCodeToLoadConstant((ConstPoolVal*) opValue,
|
||||
vmInstr, loadConstVec, target);
|
||||
minstr->SetMachineOperand(op, opType, tmpReg);
|
||||
|
||||
MachineInstr *minstr1, *minstr2;
|
||||
minstr1 = CreateLoadConstInstr(target, vmInstr,
|
||||
opValue, tmpReg, minstr2);
|
||||
tmpReg->addMachineInstruction(minstr1);
|
||||
|
||||
loadConstVec[numNew++] = minstr1;
|
||||
if (minstr2 != NULL)
|
||||
loadConstVec[numNew++] = minstr2;
|
||||
}
|
||||
else
|
||||
minstr->SetMachineOperand(op, opType, immedValue);
|
||||
@ -1220,6 +1235,39 @@ FixConstantOperands(const InstructionNode* vmInstrNode,
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Also, check for operands of the VM instruction that are implicit
|
||||
// operands of the machine instruction. These include:
|
||||
// -- arguments to a Call
|
||||
// -- return value of a Return
|
||||
//
|
||||
// Any such operand that is a constant value needs to be fixed also.
|
||||
// At least these instructions with implicit uses (viz., Call and Return)
|
||||
// have no immediate fields, so the constant needs to be loaded into
|
||||
// a register.
|
||||
//
|
||||
vector<Value*>& implUseVec = vmInstr->getMachineInstrVec().getImplicitUses();
|
||||
if (implUseVec.size() > 0)
|
||||
{
|
||||
assert((vmInstr->getOpcode() == Instruction::Call ||
|
||||
vmInstr->getOpcode() == Instruction::Ret)
|
||||
&& "May need to check immediate fields for other instructions");
|
||||
|
||||
for (unsigned i=1, N=implUseVec.size(); i < N; ++i)
|
||||
if (isa<ConstPoolVal>(implUseVec[i]))
|
||||
{
|
||||
TmpInstruction* tmpReg =
|
||||
InsertCodeToLoadConstant((ConstPoolVal*) implUseVec[i],
|
||||
vmInstr, loadConstVec, target);
|
||||
implUseVec[i] = tmpReg;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Finally, inserted the generated instructions in the vector
|
||||
// to be returned.
|
||||
//
|
||||
unsigned numNew = loadConstVec.size();
|
||||
if (numNew > 0)
|
||||
{
|
||||
// Insert the new instructions *before* the old ones by moving
|
||||
@ -1376,8 +1424,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
|
||||
const Type* opType;
|
||||
int nextRule;
|
||||
int forwardOperandNum = -1;
|
||||
int64_t s0 = 0; // variables holding zero to avoid
|
||||
uint64_t u0 = 0; // overloading ambiguities below
|
||||
int64_t s0=0, s8=8; // variables holding constants to avoid
|
||||
uint64_t u0=0; // overloading ambiguities below
|
||||
|
||||
mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
|
||||
|
||||
@ -1420,7 +1468,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
|
||||
mvec[0] = new MachineInstr(RETURN);
|
||||
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
||||
returnReg);
|
||||
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s0);
|
||||
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
|
||||
|
||||
returnReg->addMachineInstruction(mvec[0]);
|
||||
|
||||
@ -2007,8 +2055,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
|
||||
// is available, replace this with a CALL instruction.
|
||||
// Mark both the indirection register and the return-address
|
||||
// register as hidden virtual registers.
|
||||
// Also, mark the operands of the Call as implicit operands
|
||||
// of the machine instruction.
|
||||
// Also, mark the operands of the Call and the return value
|
||||
// as implicit operands of the machine instruction.
|
||||
{
|
||||
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
|
||||
Method* callee = callInstr->getCalledMethod();
|
||||
@ -2017,14 +2065,21 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
|
||||
callee, NULL);
|
||||
Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
|
||||
callInstr, NULL);
|
||||
|
||||
|
||||
// Note temporary values and implicit uses in mvec
|
||||
//
|
||||
// WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
|
||||
// The result value must go in slot N. This is assumed
|
||||
// in register allocation.
|
||||
//
|
||||
callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
|
||||
callInstr->getMachineInstrVec().addTempValue(retAddrReg);
|
||||
for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
|
||||
if (callInstr->getOperand(i) != callee)
|
||||
callInstr->getMachineInstrVec().addImplicitUse(
|
||||
callInstr->getOperand(i));
|
||||
if (callInstr->getCalledMethod()->getReturnType() == Type::VoidTy)
|
||||
callInstr->getMachineInstrVec().addImplicitUse(callInstr);
|
||||
|
||||
// Generate the machine instruction and its operands
|
||||
mvec[0] = new MachineInstr(JMPL);
|
||||
|
Loading…
x
Reference in New Issue
Block a user