mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-16 16:16:45 +00:00
[LCG] Remove all of the complexity stemming from supporting copying.
Reality is that we're never going to copy one of these. Supporting this was becoming a nightmare because nothing even causes it to compile most of the time. Lots of subtle errors built up that wouldn't have been caught by any "normal" testing. Also, make the move assignment actually work rather than the bogus swap implementation that would just infloop if used. As part of that, factor out the graph pointer updates into a helper to share between move construction and move assignment. llvm-svn: 206583
This commit is contained in:
parent
8142749c02
commit
3104562756
@ -193,9 +193,6 @@ public:
|
||||
/// CalleeSet.
|
||||
Node(LazyCallGraph &G, Function &F);
|
||||
|
||||
/// \brief Constructor used when copying a node from one graph to another.
|
||||
Node(LazyCallGraph &G, const Node &OtherN);
|
||||
|
||||
public:
|
||||
typedef LazyCallGraph::iterator iterator;
|
||||
|
||||
@ -291,23 +288,8 @@ public:
|
||||
/// requested during traversal.
|
||||
LazyCallGraph(Module &M);
|
||||
|
||||
/// \brief Copy constructor.
|
||||
///
|
||||
/// This does a deep copy of the graph. It does no verification that the
|
||||
/// graph remains valid for the module. It is also relatively expensive.
|
||||
LazyCallGraph(const LazyCallGraph &G);
|
||||
|
||||
/// \brief Move constructor.
|
||||
///
|
||||
/// This is a deep move. It leaves G in an undefined but destroyable state.
|
||||
/// Any other operation on G is likely to fail.
|
||||
LazyCallGraph(LazyCallGraph &&G);
|
||||
|
||||
/// \brief Copy and move assignment.
|
||||
LazyCallGraph &operator=(LazyCallGraph RHS) {
|
||||
std::swap(*this, RHS);
|
||||
return *this;
|
||||
}
|
||||
LazyCallGraph &operator=(LazyCallGraph &&RHS);
|
||||
|
||||
iterator begin() { return iterator(*this, EntryNodes); }
|
||||
iterator end() { return iterator(*this, EntryNodes, iterator::IsAtEndT()); }
|
||||
@ -378,8 +360,8 @@ private:
|
||||
/// the NodeMap.
|
||||
Node *insertInto(Function &F, Node *&MappedN);
|
||||
|
||||
/// \brief Helper to copy a node from another graph into this one.
|
||||
Node *copyInto(const Node &OtherN);
|
||||
/// \brief Helper to update pointers back to the graph object during moves.
|
||||
void updateGraphPtrs();
|
||||
|
||||
/// \brief Retrieve the next node in the post-order SCC walk of the call graph.
|
||||
SCC *getNextSCCInPostOrder();
|
||||
|
@ -65,18 +65,6 @@ LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
||||
findCallees(Worklist, Visited, Callees, CalleeSet);
|
||||
}
|
||||
|
||||
LazyCallGraph::Node::Node(LazyCallGraph &G, const Node &OtherN)
|
||||
: G(&G), F(OtherN.F), DFSNumber(0), LowLink(0), CalleeSet(OtherN.CalleeSet) {
|
||||
// Loop over the other node's callees, adding the Function*s to our list
|
||||
// directly, and recursing to add the Node*s.
|
||||
Callees.reserve(OtherN.Callees.size());
|
||||
for (const auto &OtherCallee : OtherN.Callees)
|
||||
if (Function *Callee = OtherCallee.dyn_cast<Function *>())
|
||||
Callees.push_back(Callee);
|
||||
else
|
||||
Callees.push_back(G.copyInto(*OtherCallee.get<Node *>()));
|
||||
}
|
||||
|
||||
LazyCallGraph::LazyCallGraph(Module &M) {
|
||||
for (Function &F : M)
|
||||
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
||||
@ -100,30 +88,33 @@ LazyCallGraph::LazyCallGraph(Module &M) {
|
||||
SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
|
||||
}
|
||||
|
||||
LazyCallGraph::LazyCallGraph(const LazyCallGraph &G)
|
||||
: EntryNodeSet(G.EntryNodeSet) {
|
||||
EntryNodes.reserve(G.EntryNodes.size());
|
||||
for (const auto &EntryNode : G.EntryNodes)
|
||||
if (Function *Callee = EntryNode.dyn_cast<Function *>())
|
||||
EntryNodes.push_back(Callee);
|
||||
else
|
||||
EntryNodes.push_back(copyInto(*EntryNode.get<Node *>()));
|
||||
|
||||
// Just re-populate the SCCEntryNodes structure so we recompute the SCCs if
|
||||
// needed.
|
||||
for (auto &Entry : EntryNodes)
|
||||
if (Function *F = Entry.dyn_cast<Function *>())
|
||||
SCCEntryNodes.insert(F);
|
||||
else
|
||||
SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
|
||||
}
|
||||
|
||||
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
||||
: BPA(std::move(G.BPA)), EntryNodes(std::move(G.EntryNodes)),
|
||||
EntryNodeSet(std::move(G.EntryNodeSet)), SCCBPA(std::move(G.SCCBPA)),
|
||||
SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
|
||||
DFSStack(std::move(G.DFSStack)),
|
||||
SCCEntryNodes(std::move(G.SCCEntryNodes)) {
|
||||
updateGraphPtrs();
|
||||
}
|
||||
|
||||
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
||||
BPA = std::move(G.BPA);
|
||||
EntryNodes = std::move(G.EntryNodes);
|
||||
EntryNodeSet = std::move(G.EntryNodeSet);
|
||||
SCCBPA = std::move(G.SCCBPA);
|
||||
SCCMap = std::move(G.SCCMap);
|
||||
LeafSCCs = std::move(G.LeafSCCs);
|
||||
DFSStack = std::move(G.DFSStack);
|
||||
SCCEntryNodes = std::move(G.SCCEntryNodes);
|
||||
updateGraphPtrs();
|
||||
return *this;
|
||||
}
|
||||
|
||||
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
||||
return new (MappedN = BPA.Allocate()) Node(*this, F);
|
||||
}
|
||||
|
||||
void LazyCallGraph::updateGraphPtrs() {
|
||||
// Process all nodes updating the graph pointers.
|
||||
SmallVector<Node *, 16> Worklist;
|
||||
for (auto &Entry : EntryNodes)
|
||||
@ -139,18 +130,6 @@ LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
||||
}
|
||||
}
|
||||
|
||||
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
||||
return new (MappedN = BPA.Allocate()) Node(*this, F);
|
||||
}
|
||||
|
||||
LazyCallGraph::Node *LazyCallGraph::copyInto(const Node &OtherN) {
|
||||
Node *&N = NodeMap[&OtherN.F];
|
||||
if (N)
|
||||
return N;
|
||||
|
||||
return new (N = BPA.Allocate()) Node(*this, OtherN);
|
||||
}
|
||||
|
||||
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
||||
// When the stack is empty, there are no more SCCs to walk in this graph.
|
||||
if (DFSStack.empty()) {
|
||||
|
Loading…
Reference in New Issue
Block a user