mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-02 16:36:40 +00:00
Add a new document describing the LLVM accurate garbage collection support.
llvm-svn: 13667
This commit is contained in:
parent
fa5d566d95
commit
3a607c575e
418
docs/GarbageCollection.html
Normal file
418
docs/GarbageCollection.html
Normal file
@ -0,0 +1,418 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
||||
"http://www.w3.org/TR/html4/strict.dtd">
|
||||
<html>
|
||||
<head>
|
||||
<title>Accurate Garbage Collection with LLVM</title>
|
||||
<link rel="stylesheet" href="llvm.css" type="text/css">
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<div class="doc_title">
|
||||
Accurate Garbage Collection with LLVM
|
||||
</div>
|
||||
|
||||
<ol>
|
||||
<li><a href="#introduction">Introduction</a>
|
||||
<ul>
|
||||
<li><a href="#feature">GC features provided and algorithms supported</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><a href="#interfaces">Interfaces for user programs</a>
|
||||
<ul>
|
||||
<li><a href="#roots">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a></li>
|
||||
<li><a href="#gcdescriptors">GC descriptor format for heap objects</a></li>
|
||||
<li><a href="#allocate">Allocating memory from the GC</a></li>
|
||||
<li><a href="#barriers">Reading and writing references to the heap</a></li>
|
||||
<li><a href="#explicit">Explicit invocation of the garbage collector</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><a href="#gcimpl">Implementing a garbage collector</a>
|
||||
<ul>
|
||||
<li><a href="#llvm_gc_readwrite">Implementing <tt>llvm_gc_read</tt> and <tt>llvm_gc_write</tt></a></li>
|
||||
<li><a href="#traceroots">Tracing the GC roots from the program stack</a></li>
|
||||
<li><a href="#gcimpls">GC implementations available</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<!--
|
||||
<li><a href="#codegen">Implementing GC support in a code generator</a></li>
|
||||
-->
|
||||
</ol>
|
||||
|
||||
<div class="doc_author">
|
||||
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="introduction">Introduction</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>Garbage collection is a widely used technique that frees the programmer from
|
||||
having to know the life-times of heap objects, making software easier to produce
|
||||
and maintain. Many programming languages rely on garbage collection for
|
||||
automatic memory management. There are two primary forms of garbage collection:
|
||||
conservative and accurate.</p>
|
||||
|
||||
<p>Conservative garbage collection often does not require any special support
|
||||
from either the language or the compiler: it can handle non-type-safe
|
||||
programming languages (such as C/C++) and does not require any special
|
||||
information from the compiler. The [LINK] Boehm collector is an example of a
|
||||
state-of-the-art conservative collector.</p>
|
||||
|
||||
<p>Accurate garbage collection requires the ability to identify all pointers in
|
||||
the program at run-time (which requires that the source-language be type-safe in
|
||||
most cases). Identifying pointers at run-time requires compiler support to
|
||||
locate all places that hold live pointer variables at run-time, including the
|
||||
<a href="#roots">processor stack and registers</a>.</p>
|
||||
|
||||
<p>
|
||||
Conservative garbage collection is attractive because it does not require any
|
||||
special compiler support, but it does have problems. In particular, because the
|
||||
conservative garbage collector cannot <i>know</i> that a particular word in the
|
||||
machine is a pointer, it cannot move live objects in the heap (preventing the
|
||||
use of compacting and generational GC algorithms) and it can occasionally suffer
|
||||
from memory leaks due to integer values that happen to point to objects in the
|
||||
program. In addition, some aggressive compiler transformations can break
|
||||
conservative garbage collectors (though these seem rare in practice).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Accurate garbage collectors do not suffer from any of these problems, but they
|
||||
can suffer from degraded scalar optimization of the program. In particular,
|
||||
because the runtime must be able to identify and update all pointers active in
|
||||
the program, some optimizations are less effective. In practice, however, the
|
||||
locality and performance benefits of using aggressive garbage allocation
|
||||
techniques dominates any low-level losses.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
This document describes the mechanisms and interfaces provided by LLVM to
|
||||
support accurate garbage collection.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="feature">GC features provided and algorithms supported</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>
|
||||
LLVM provides support for a broad class of garbage collection algorithms,
|
||||
including compacting semi-space collectors, mark-sweep collectors, generational
|
||||
collectors, and even reference counting implementations. It includes support
|
||||
for <a href="#barriers">read and write barriers</a>, and associating <a
|
||||
href="#roots">meta-data with stack objects</a> (used for tagless garbage
|
||||
collection). All LLVM code generators support garbage collection, including the
|
||||
C backend.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
We hope that the primitive support built into LLVM is sufficient to support a
|
||||
broad class of garbage collected languages, including Scheme, ML, scripting
|
||||
languages, Java, C#, etc. That said, the implemented garbage collectors may
|
||||
need to be extended to support language-specific features such as finalization,
|
||||
weak references, or other features. As these needs are identified and
|
||||
implemented, they should be added to this specification.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
LLVM does not currently support garbage collection of multi-threaded programs or
|
||||
GC-safe points other than function calls, but these will be added in the future
|
||||
as there is interest.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="interfaces">Interfaces for user programs</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>This section describes the interfaces provided by LLVM and by the garbage
|
||||
collector run-time that should be used by user programs. As such, this is the
|
||||
interface that front-end authors should generate code for.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="roots">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void %llvm.gcroot(<ty>** %ptrloc, <ty2>* %metadata)
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM of a pointer variable
|
||||
on the stack. The first argument contains the address of the variable on the
|
||||
stack, and the second contains a pointer to metadata that should be associated
|
||||
with the pointer (which <b>must</b> be a constant or global value address). At
|
||||
runtime, the <tt>llvm.gcroot</tt> intrinsic stores a null pointer into the
|
||||
specified location to initialize the pointer.</p>
|
||||
|
||||
<p>
|
||||
Consider the following fragment of Java code:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
{
|
||||
Object X; // A null-initialized reference to an object
|
||||
...
|
||||
}
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
This block (which may be located in the middle of a function or in a loop nest),
|
||||
could be compiled to this LLVM code:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
Entry:
|
||||
;; In the entry block for the function, allocate the
|
||||
;; stack space for X, which is an LLVM pointer.
|
||||
%X = alloca %Object*
|
||||
...
|
||||
|
||||
;; "CodeBlock" is the block corresponding to the start
|
||||
;; of the scope scope above.
|
||||
CodeBlock:
|
||||
;; Initialize the object, telling LLVM that it is now live.
|
||||
;; Java has type-tags on objects, so it doesn't need any
|
||||
;; metadata.
|
||||
call void %llvm.gcroot(%Object** %X, sbyte* null)
|
||||
...
|
||||
|
||||
;; As the pointer goes out of scope, store a null value into
|
||||
;; it, to indicate that the value is no longer live.
|
||||
store %Object* null, %Object** %X
|
||||
...
|
||||
</pre>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="gcdescriptors">GC descriptor format for heap objects</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>
|
||||
Either from root meta data, or from object headers. Front-end can provide a
|
||||
call-back to get descriptor from object without meta-data.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="allocate">Allocating memory from the GC</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
sbyte *%llvm_gc_allocate(unsigned %Size)
|
||||
</tt></div>
|
||||
|
||||
<p>The <tt>llvm_gc_allocate</tt> function is a global function defined by the
|
||||
garbage collector implementation to allocate memory. It should return a
|
||||
zeroed-out block of memory of the appropriate size.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="barriers">Reading and writing references to the heap</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
sbyte *%llvm.gcread(sbyte **)<br>
|
||||
void %llvm.gcwrite(sbyte*, sbyte**)
|
||||
</tt></div>
|
||||
|
||||
<p>Several of the more interesting garbage collectors (e.g., generational
|
||||
collectors) need to be informed when the mutator (the program that needs garbage
|
||||
collection) reads or writes object references into the heap. In the case of a
|
||||
generational collector, it needs to keep track of which "old" generation objects
|
||||
have references stored into them. The amount of code that typically needs to be
|
||||
executed is usually quite small, so the overall performance impact of the
|
||||
inserted code is tolerable.</p>
|
||||
|
||||
<p>To support garbage collectors that use read or write barriers, LLVM provides
|
||||
the <tt>llvm.gcread</tt> and <tt>llvm.gcwrite</tt> intrinsics. The first
|
||||
intrinsic has exactly the same semantics as a non-volatile LLVM load and the
|
||||
second has the same semantics as a non-volatile LLVM store. At code generation
|
||||
time, these intrinsics are replaced with calls into the garbage collector
|
||||
(<tt><a href="#llvm_gc_readwrite">llvm_gc_read</a></tt> and <tt><a
|
||||
href="#llvm_gc_readwrite">llvm_gc_write</a></tt> respectively), which are then
|
||||
inlined into the code.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
If you are writing a front-end for a garbage collected language, every load or
|
||||
store of a reference from or to the heap should use these intrinsics instead of
|
||||
normal LLVM loads/stores.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="initialize">Garbage collector startup and initialization</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void %llvm_gc_initialize()
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_gc_initialize</tt> function should be called once before any other
|
||||
garbage collection functions are called. This gives the garbage collector the
|
||||
chance to initialize itself and allocate the heap spaces.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="explicit">Explicit invocation of the garbage collector</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void %llvm_gc_collect()
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_gc_collect</tt> function is exported by the garbage collector
|
||||
implementations to provide a full collection, even when the heap is not
|
||||
exhausted. This can be used by end-user code as a hint, and may be ignored by
|
||||
the garbage collector.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="gcimpl">Implementing a garbage collector</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>
|
||||
Implementing a garbage collector for LLVM is fairly straight-forward. The
|
||||
implementation must include the <a
|
||||
href="#allocate"><tt>llvm_gc_allocate</tt></a> and <a
|
||||
href="#explicit"><tt>llvm_gc_collect</tt></a> functions, and it must implement
|
||||
the <a href="#llvm_gc_readwrite">read/write barrier</a> functions as well. To
|
||||
do this, it will probably have to <a href="#traceroots">trace through the roots
|
||||
from the stack</a> and understand the <a href="#gcdescriptors">GC descriptors
|
||||
for heap objects</a>. Luckily, there are some <a href="#gcimpls">example
|
||||
implementations</a> available.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="llvm_gc_readwrite">Implementing <tt>llvm_gc_read</tt> and <tt>llvm_gc_write</tt></a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
<div class="doc_code"><tt>
|
||||
void *llvm_gc_read(void **)<br>
|
||||
void llvm_gc_write(void*, void**)
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
These functions <i>must</i> be implemented in every garbage collector, even if
|
||||
they do not need read/write barriers. In this case, just load or store the
|
||||
pointer, then return.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
If an actual read or write barrier is needed, it should be straight-forward to
|
||||
implement it. Note that we may add a pointer to the start of the memory object
|
||||
as a parameter in the future, if needed.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="traceroots">Tracing the GC roots from the program stack</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
<div class="doc_code"><tt>
|
||||
void llvm_cg_walk_gcroots(void (*FP)(void **Root, void *Meta));
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_cg_walk_gcroots</tt> function is a function provided by the code
|
||||
generator that iterates through all of the GC roots on the stack, calling the
|
||||
specified function pointer with each record. For each GC root, the address of
|
||||
the pointer and the meta-data (from the <a
|
||||
href="#gcroot"><tt>llvm.gcroot</tt></a> intrinsic) are provided.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="gcimpls">GC implementations available</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>
|
||||
To make this more concrete, the currently implemented LLVM garbage collectors
|
||||
all live in the llvm/runtime/GC directory in the LLVM source-base.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
TODO: Brief overview of each.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<hr>
|
||||
<address>
|
||||
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
|
||||
src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
|
||||
<a href="http://validator.w3.org/check/referer"><img
|
||||
src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
|
||||
|
||||
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
|
||||
<a href="http://llvm.cs.uiuc.edu">LLVM Compiler Infrastructure</a><br>
|
||||
Last modified: $Date$
|
||||
</address>
|
||||
|
||||
</body>
|
||||
</html>
|
Loading…
Reference in New Issue
Block a user