mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-28 13:51:09 +00:00
[DebugInfo] Simplify GSYM::AddressRange and GSYM::AddressRanges
Delete unnecessary getters of AddressRange. Simplify AddressRange::size(): Start <= End check should be checked in an upper layer. Delete isContiguousWith() that doesn't make sense. Simplify AddressRanges::insert. Delete commented code. Fix it when more than 1 ranges are to be deleted. Delete trailing newline. llvm-svn: 364637
This commit is contained in:
parent
a82cfd92f0
commit
3c005f1680
@ -56,15 +56,15 @@ struct FunctionInfo {
|
||||
return Name != 0;
|
||||
}
|
||||
|
||||
uint64_t startAddress() const { return Range.startAddress(); }
|
||||
uint64_t endAddress() const { return Range.endAddress(); }
|
||||
uint64_t startAddress() const { return Range.Start; }
|
||||
uint64_t endAddress() const { return Range.End; }
|
||||
uint64_t size() const { return Range.size(); }
|
||||
void setStartAddress(uint64_t Addr) { Range.setStartAddress(Addr); }
|
||||
void setEndAddress(uint64_t Addr) { Range.setEndAddress(Addr); }
|
||||
void setSize(uint64_t Size) { Range.setSize(Size); }
|
||||
void setStartAddress(uint64_t Addr) { Range.End = Addr; }
|
||||
void setEndAddress(uint64_t Addr) { Range.End = Addr; }
|
||||
void setSize(uint64_t Size) { Range.End = Range.Start + Size; }
|
||||
|
||||
void clear() {
|
||||
Range.clear();
|
||||
Range = {0, 0};
|
||||
Name = 0;
|
||||
Lines.clear();
|
||||
Inline.clear();
|
||||
|
@ -27,58 +27,28 @@ namespace gsym {
|
||||
|
||||
/// A class that represents an address range. The range is specified using
|
||||
/// a start and an end address.
|
||||
class AddressRange {
|
||||
struct AddressRange {
|
||||
uint64_t Start;
|
||||
uint64_t End;
|
||||
public:
|
||||
AddressRange(uint64_t S = 0, uint64_t E = 0) : Start(S), End(E) {}
|
||||
/// Access to the size must use the size() accessor to ensure the correct
|
||||
/// answer. This allows an AddressRange to be constructed with invalid
|
||||
/// address ranges where the end address is less that the start address
|
||||
/// either because it was not set, or because of incorrect data.
|
||||
uint64_t size() const { return Start < End ? End - Start : 0; }
|
||||
void setStartAddress(uint64_t Addr) { Start = Addr; }
|
||||
void setEndAddress(uint64_t Addr) { End = Addr; }
|
||||
void setSize(uint64_t Size) { End = Start + Size; }
|
||||
uint64_t startAddress() const { return Start; }
|
||||
/// Access to the end address must use the size() accessor to ensure the
|
||||
/// correct answer. This allows an AddressRange to be constructed with
|
||||
/// invalid address ranges where the end address is less that the start
|
||||
/// address either because it was not set, or because of incorrect data.
|
||||
uint64_t endAddress() const { return Start + size(); }
|
||||
void clear() {
|
||||
Start = 0;
|
||||
End = 0;
|
||||
}
|
||||
bool contains(uint64_t Addr) const { return Start <= Addr && Addr < endAddress(); }
|
||||
bool isContiguousWith(const AddressRange &R) const {
|
||||
return (Start <= R.endAddress()) && (endAddress() >= R.Start);
|
||||
}
|
||||
AddressRange() : Start(0), End(0) {}
|
||||
AddressRange(uint64_t S, uint64_t E) : Start(S), End(E) {}
|
||||
uint64_t size() const { return End - Start; }
|
||||
bool contains(uint64_t Addr) const { return Start <= Addr && Addr < End; }
|
||||
bool intersects(const AddressRange &R) const {
|
||||
return (Start < R.endAddress()) && (endAddress() > R.Start);
|
||||
return Start < R.End && R.Start < End;
|
||||
}
|
||||
bool intersect(const AddressRange &R) {
|
||||
if (intersects(R)) {
|
||||
Start = std::min<uint64_t>(Start, R.Start);
|
||||
End = std::max<uint64_t>(endAddress(), R.endAddress());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
bool operator==(const AddressRange &R) const {
|
||||
return Start == R.Start && End == R.End;
|
||||
}
|
||||
bool operator!=(const AddressRange &R) const {
|
||||
return !(*this == R);
|
||||
}
|
||||
bool operator<(const AddressRange &R) const {
|
||||
return std::make_pair(Start, End) < std::make_pair(R.Start, R.End);
|
||||
}
|
||||
};
|
||||
|
||||
inline bool operator==(const AddressRange &LHS, const AddressRange &RHS) {
|
||||
return LHS.startAddress() == RHS.startAddress() && LHS.endAddress() == RHS.endAddress();
|
||||
}
|
||||
inline bool operator!=(const AddressRange &LHS, const AddressRange &RHS) {
|
||||
return LHS.startAddress() != RHS.startAddress() || LHS.endAddress() != RHS.endAddress();
|
||||
}
|
||||
inline bool operator<(const AddressRange &LHS, const AddressRange &RHS) {
|
||||
if (LHS.startAddress() == RHS.startAddress())
|
||||
return LHS.endAddress() < RHS.endAddress();
|
||||
return LHS.startAddress() < RHS.startAddress();
|
||||
}
|
||||
|
||||
raw_ostream &operator<<(raw_ostream &OS, const AddressRange &R);
|
||||
|
||||
/// The AddressRanges class helps normalize address range collections.
|
||||
@ -96,7 +66,7 @@ public:
|
||||
void clear() { Ranges.clear(); }
|
||||
bool empty() const { return Ranges.empty(); }
|
||||
bool contains(uint64_t Addr) const;
|
||||
void insert(const AddressRange &R);
|
||||
void insert(AddressRange Range);
|
||||
size_t size() const { return Ranges.size(); }
|
||||
bool operator==(const AddressRanges &RHS) const {
|
||||
return Ranges == RHS.Ranges;
|
||||
|
@ -13,8 +13,7 @@ using namespace llvm;
|
||||
using namespace gsym;
|
||||
|
||||
raw_ostream &llvm::gsym::operator<<(raw_ostream &OS, const FunctionInfo &FI) {
|
||||
OS << '[' << HEX64(FI.Range.startAddress()) << '-'
|
||||
<< HEX64(FI.Range.endAddress()) << "): "
|
||||
OS << '[' << HEX64(FI.Range.Start) << '-' << HEX64(FI.Range.End) << "): "
|
||||
<< "Name=" << HEX32(FI.Name) << '\n';
|
||||
for (const auto &Line : FI.Lines)
|
||||
OS << Line << '\n';
|
||||
|
@ -34,7 +34,7 @@ raw_ostream &llvm::gsym::operator<<(raw_ostream &OS, const InlineInfo &II) {
|
||||
return OS;
|
||||
}
|
||||
|
||||
static bool getInlineStackHelper(const InlineInfo &II, uint64_t Addr,
|
||||
static bool getInlineStackHelper(const InlineInfo &II, uint64_t Addr,
|
||||
std::vector<const InlineInfo *> &InlineStack) {
|
||||
if (II.Ranges.contains(Addr)) {
|
||||
// If this is the top level that represents the concrete function,
|
||||
|
@ -15,53 +15,41 @@ using namespace llvm;
|
||||
using namespace gsym;
|
||||
|
||||
|
||||
void AddressRanges::insert(const AddressRange &Range) {
|
||||
void AddressRanges::insert(AddressRange Range) {
|
||||
if (Range.size() == 0)
|
||||
return;
|
||||
// Ranges.insert(std::upper_bound(Ranges.begin(), Ranges.end(), Range), Range);
|
||||
|
||||
// // Check if an existing range intersects with this range, and if so,
|
||||
// // grow the intersecting ranges instead of adding a new one.
|
||||
auto Begin = Ranges.begin();
|
||||
auto End = Ranges.end();
|
||||
const auto Iter = std::upper_bound(Begin, End, Range);
|
||||
if (Iter != Begin) {
|
||||
auto PrevIter = Iter - 1;
|
||||
// If the previous range itersects with "Range" they will be combined.
|
||||
if (PrevIter->intersect(Range)) {
|
||||
// Now check if the previous range intersects with the next range since
|
||||
// the previous range was combined. If so, combine them and remove the
|
||||
// next range.
|
||||
if (Iter != End && PrevIter->intersect(*Iter))
|
||||
Ranges.erase(Iter);
|
||||
return;
|
||||
}
|
||||
auto It = llvm::upper_bound(Ranges, Range);
|
||||
auto It2 = It;
|
||||
while (It2 != Ranges.end() && It2->Start < Range.End)
|
||||
++It2;
|
||||
if (It != It2) {
|
||||
Range.End = std::max(Range.End, It2[-1].End);
|
||||
It = Ranges.erase(It, It2);
|
||||
}
|
||||
// If the next range intersects with "Range", combined and return.
|
||||
if (Iter != End && Iter->intersect(Range))
|
||||
return;
|
||||
Ranges.insert(Iter, Range);
|
||||
if (It != Ranges.begin() && Range.Start < It[-1].End)
|
||||
It[-1].End = std::max(It[-1].End, Range.End);
|
||||
else
|
||||
Ranges.insert(It, Range);
|
||||
}
|
||||
|
||||
bool AddressRanges::contains(uint64_t Addr) const {
|
||||
auto It = std::partition_point(
|
||||
Ranges.begin(), Ranges.end(),
|
||||
[=](const AddressRange &R) { return R.startAddress() <= Addr; });
|
||||
return It != Ranges.begin() && It[-1].contains(Addr);
|
||||
[=](const AddressRange &R) { return R.Start <= Addr; });
|
||||
return It != Ranges.begin() && Addr < It[-1].End;
|
||||
}
|
||||
|
||||
raw_ostream &llvm::gsym::operator<<(raw_ostream &OS, const AddressRange &R) {
|
||||
return OS << '[' << HEX64(R.startAddress()) << " - " << HEX64(R.endAddress())
|
||||
<< ")";
|
||||
return OS << '[' << HEX64(R.Start) << " - " << HEX64(R.End) << ")";
|
||||
}
|
||||
|
||||
raw_ostream &llvm::gsym::operator<<(raw_ostream &OS, const AddressRanges &AR) {
|
||||
size_t Size = AR.size();
|
||||
for (size_t I=0; I<Size; ++I) {
|
||||
for (size_t I = 0; I < Size; ++I) {
|
||||
if (I)
|
||||
OS << ' ';
|
||||
OS << AR[I];
|
||||
}
|
||||
return OS;
|
||||
}
|
||||
|
||||
|
@ -179,33 +179,33 @@ TEST(GSYMTest, TestInlineInfo) {
|
||||
EXPECT_FALSE(Root.getInlineStack(0x50));
|
||||
|
||||
// Verify that we get no inline stacks for addresses out of [0x100-0x200)
|
||||
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].startAddress() - 1));
|
||||
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].endAddress()));
|
||||
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].Start - 1));
|
||||
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].End));
|
||||
|
||||
// Verify we get no inline stack entries for addresses that are in
|
||||
// [0x100-0x200) but not in [0x150-0x160)
|
||||
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].startAddress() - 1));
|
||||
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].endAddress()));
|
||||
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].Start - 1));
|
||||
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].End));
|
||||
|
||||
// Verify we get one inline stack entry for addresses that are in
|
||||
// [[0x150-0x160)) but not in [0x152-0x155) or [0x157-0x158)
|
||||
auto InlineInfos = Root.getInlineStack(Inline1.Ranges[0].startAddress());
|
||||
auto InlineInfos = Root.getInlineStack(Inline1.Ranges[0].Start);
|
||||
ASSERT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 1u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1);
|
||||
InlineInfos = Root.getInlineStack(Inline1.Ranges[0].endAddress() - 1);
|
||||
InlineInfos = Root.getInlineStack(Inline1.Ranges[0].End - 1);
|
||||
EXPECT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 1u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1);
|
||||
|
||||
// Verify we get two inline stack entries for addresses that are in
|
||||
// [0x152-0x155)
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].startAddress());
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].Start);
|
||||
EXPECT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 2u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
|
||||
ASSERT_EQ(*InlineInfos->at(1), Inline1);
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].endAddress() - 1);
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].End - 1);
|
||||
EXPECT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 2u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
|
||||
@ -213,12 +213,12 @@ TEST(GSYMTest, TestInlineInfo) {
|
||||
|
||||
// Verify we get two inline stack entries for addresses that are in
|
||||
// [0x157-0x158)
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].startAddress());
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].Start);
|
||||
EXPECT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 2u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
|
||||
ASSERT_EQ(*InlineInfos->at(1), Inline1);
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].endAddress() - 1);
|
||||
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].End - 1);
|
||||
EXPECT_TRUE(InlineInfos);
|
||||
ASSERT_EQ(InlineInfos->size(), 2u);
|
||||
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
|
||||
@ -257,8 +257,6 @@ TEST(GSYMTest, TestRanges) {
|
||||
const uint64_t EndAddr = 0x2000;
|
||||
// Verify constructor and API to ensure it takes start and end address.
|
||||
const AddressRange Range(StartAddr, EndAddr);
|
||||
EXPECT_EQ(Range.startAddress(), StartAddr);
|
||||
EXPECT_EQ(Range.endAddress(), EndAddr);
|
||||
EXPECT_EQ(Range.size(), EndAddr - StartAddr);
|
||||
|
||||
// Verify llvm::gsym::AddressRange::contains().
|
||||
@ -291,9 +289,9 @@ TEST(GSYMTest, TestRanges) {
|
||||
EXPECT_LT(Range, RangeDifferentEnd);
|
||||
EXPECT_LT(Range, RangeDifferentStartEnd);
|
||||
// Test "bool operator<(const AddressRange &, uint64_t)"
|
||||
EXPECT_LT(Range, StartAddr + 1);
|
||||
EXPECT_LT(Range.Start, StartAddr + 1);
|
||||
// Test "bool operator<(uint64_t, const AddressRange &)"
|
||||
EXPECT_LT(StartAddr - 1, Range);
|
||||
EXPECT_LT(StartAddr - 1, Range.Start);
|
||||
|
||||
// Verify llvm::gsym::AddressRange::isContiguousWith() and
|
||||
// llvm::gsym::AddressRange::intersects().
|
||||
@ -305,14 +303,6 @@ TEST(GSYMTest, TestRanges) {
|
||||
const AddressRange StartsAtRangeEnd(EndAddr, EndAddr + 0x100);
|
||||
const AddressRange StartsAfterRangeEnd(EndAddr + 1, EndAddr + 0x100);
|
||||
|
||||
EXPECT_FALSE(Range.isContiguousWith(EndsBeforeRangeStart));
|
||||
EXPECT_TRUE(Range.isContiguousWith(EndsAtRangeStart));
|
||||
EXPECT_TRUE(Range.isContiguousWith(OverlapsRangeStart));
|
||||
EXPECT_TRUE(Range.isContiguousWith(InsideRange));
|
||||
EXPECT_TRUE(Range.isContiguousWith(OverlapsRangeEnd));
|
||||
EXPECT_TRUE(Range.isContiguousWith(StartsAtRangeEnd));
|
||||
EXPECT_FALSE(Range.isContiguousWith(StartsAfterRangeEnd));
|
||||
|
||||
EXPECT_FALSE(Range.intersects(EndsBeforeRangeStart));
|
||||
EXPECT_FALSE(Range.intersects(EndsAtRangeStart));
|
||||
EXPECT_TRUE(Range.intersects(OverlapsRangeStart));
|
||||
@ -350,12 +340,12 @@ TEST(GSYMTest, TestRanges) {
|
||||
EXPECT_EQ(Ranges[0], AddressRange(0x1100, 0x1F00));
|
||||
|
||||
// Verify a range that starts before and intersects gets combined.
|
||||
Ranges.insert(AddressRange(0x1000, Ranges[0].startAddress() + 1));
|
||||
Ranges.insert(AddressRange(0x1000, Ranges[0].Start + 1));
|
||||
EXPECT_EQ(Ranges.size(), 1u);
|
||||
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x1F00));
|
||||
|
||||
// Verify a range that starts inside and extends ranges gets combined.
|
||||
Ranges.insert(AddressRange(Ranges[0].endAddress() - 1, 0x2000));
|
||||
Ranges.insert(AddressRange(Ranges[0].End - 1, 0x2000));
|
||||
EXPECT_EQ(Ranges.size(), 1u);
|
||||
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x2000));
|
||||
|
||||
@ -366,10 +356,15 @@ TEST(GSYMTest, TestRanges) {
|
||||
EXPECT_EQ(Ranges[1], AddressRange(0x2000, 0x3000));
|
||||
// Verify if we add an address range that intersects two ranges
|
||||
// that they get combined
|
||||
Ranges.insert(
|
||||
AddressRange(Ranges[0].endAddress() - 1, Ranges[1].startAddress() + 1));
|
||||
Ranges.insert(AddressRange(Ranges[0].End - 1, Ranges[1].Start + 1));
|
||||
EXPECT_EQ(Ranges.size(), 1u);
|
||||
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x3000));
|
||||
|
||||
Ranges.insert(AddressRange(0x3000, 0x4000));
|
||||
Ranges.insert(AddressRange(0x4000, 0x5000));
|
||||
Ranges.insert(AddressRange(0x2000, 0x4500));
|
||||
EXPECT_EQ(Ranges.size(), 1u);
|
||||
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x5000));
|
||||
}
|
||||
|
||||
TEST(GSYMTest, TestStringTable) {
|
||||
|
Loading…
Reference in New Issue
Block a user