Rewrite LinearFunctionTestReplace to handle pointer-type IVs.

We've been hitting asserts in this code due to the many supported
combintions of modes (iv-rewrite/no-iv-rewrite) and IV types. This
second rewrite of the code attempts to deal with these cases systematically.

llvm-svn: 143546
This commit is contained in:
Andrew Trick 2011-11-02 17:19:57 +00:00
parent 9f579b4d66
commit 3c1e831108
2 changed files with 232 additions and 85 deletions

View File

@ -1278,6 +1278,16 @@ static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
/// count expression can be safely and cheaply expanded into an instruction
/// sequence that can be used by LinearFunctionTestReplace.
///
/// TODO: This fails for pointer-type loop counters with greater than one byte
/// strides, consequently preventing LFTR from running. For the purpose of LFTR
/// we could skip this check in the case that the LFTR loop counter (chosen by
/// FindLoopCounter) is also pointer type. Instead, we could directly convert
/// the loop test to an inequality test by checking the target data's alignment
/// of element types (given that the initial pointer value originates from or is
/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
/// However, we don't yet have a strong motivation for converting loop tests
/// into inequality tests.
static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
@ -1429,6 +1439,10 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
/// FindLoopCounter - Find an affine IV in canonical form.
///
/// BECount may be an i8* pointer type. The pointer difference is already
/// valid count without scaling the address stride, so it remains a pointer
/// expression as far as SCEV is concerned.
///
/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
///
/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
@ -1437,11 +1451,6 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
static PHINode *
FindLoopCounter(Loop *L, const SCEV *BECount,
ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
// I'm not sure how BECount could be a pointer type, but we definitely don't
// want to LFTR that.
if (BECount->getType()->isPointerTy())
return 0;
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond =
@ -1458,6 +1467,10 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
if (!SE->isSCEVable(Phi->getType()))
continue;
// Avoid comparing an integer IV against a pointer Limit.
if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
continue;
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
if (!AR || AR->getLoop() != L || !AR->isAffine())
continue;
@ -1503,6 +1516,82 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
return BestPhi;
}
/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
/// holds the RHS of the new loop test.
static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
SCEVExpander &Rewriter, ScalarEvolution *SE) {
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
const SCEV *IVInit = AR->getStart();
// IVInit may be a pointer while IVCount is an integer when FindLoopCounter
// finds a valid pointer IV. Sign extend BECount in order to materialize a
// GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
// the existing GEPs whenever possible.
if (IndVar->getType()->isPointerTy()
&& !IVCount->getType()->isPointerTy()) {
Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
// Expand the code for the iteration count.
assert(SE->isLoopInvariant(IVOffset, L) &&
"Computed iteration count is not loop invariant!");
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
// We could handle pointer IVs other than i8*, but we need to compensate for
// gep index scaling. See canExpandBackedgeTakenCount comments.
assert(SE->getSizeOfExpr(
cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
&& "unit stride pointer IV must be i8*");
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
}
else {
// In any other case, convert both IVInit and IVCount to integers before
// comparing. This may result in SCEV expension of pointers, but in practice
// SCEV will fold the pointer arithmetic away as such:
// BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
//
// Valid Cases: (1) both integers is most common; (2) both may be pointers
// for simple memset-style loops; (3) IVInit is an integer and IVCount is a
// pointer may occur when enable-iv-rewrite generates a canonical IV on top
// of case #2.
const SCEV *IVLimit = 0;
// For unit stride, IVCount = Start + BECount with 2's complement overflow.
// For non-zero Start, compute IVCount here.
if (AR->getStart()->isZero())
IVLimit = IVCount;
else {
assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
const SCEV *IVInit = AR->getStart();
// For integer IVs, truncate the IV before computing IVInit + BECount.
if (SE->getTypeSizeInBits(IVInit->getType())
> SE->getTypeSizeInBits(IVCount->getType()))
IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
IVLimit = SE->getAddExpr(IVInit, IVCount);
}
// Expand the code for the iteration count.
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
IRBuilder<> Builder(BI);
assert(SE->isLoopInvariant(IVLimit, L) &&
"Computed iteration count is not loop invariant!");
// Ensure that we generate the same type as IndVar, or a smaller integer
// type. In the presence of null pointer values, we have an integer type
// SCEV expression (IVInit) for a pointer type IV value (IndVar).
Type *LimitTy = IVCount->getType()->isPointerTy() ?
IndVar->getType() : IVCount->getType();
return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
}
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
@ -1514,37 +1603,36 @@ LinearFunctionTestReplace(Loop *L,
PHINode *IndVar,
SCEVExpander &Rewriter) {
assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
// LFTR can ignore IV overflow and truncate to the width of
// BECount. This avoids materializing the add(zext(add)) expression.
Type *CntTy = !EnableIVRewrite ?
BackedgeTakenCount->getType() : IndVar->getType();
const SCEV *IVLimit = BackedgeTakenCount;
const SCEV *IVCount = BackedgeTakenCount;
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
// If the exiting block is the same as the backedge block, we prefer to
// compare against the post-incremented value, otherwise we must compare
// against the preincremented value.
Value *CmpIndVar;
if (L->getExitingBlock() == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
const SCEV *N =
SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
if (CntTy == IVLimit->getType())
IVLimit = N;
SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
if (CntTy == IVCount->getType())
IVCount = N;
else {
const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
if ((isa<SCEVConstant>(N) && !N->isZero()) ||
SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
// No overflow. Cast the sum.
IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
} else {
// Potential overflow. Cast before doing the add.
IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
}
}
// The BackedgeTaken expression contains the number of times that the
@ -1552,64 +1640,17 @@ LinearFunctionTestReplace(Loop *L,
// number of times the loop executes, so use the incremented indvar.
CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
} else {
// We have to use the preincremented value...
IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
// We must use the preincremented value...
IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
CmpIndVar = IndVar;
}
// For unit stride, IVLimit = Start + BECount with 2's complement overflow.
// So for non-zero start compute the IVLimit here.
Type *CmpTy = CntTy;
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
if (!AR->getStart()->isZero()) {
assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
const SCEV *IVInit = AR->getStart();
// For pointer types, sign extend BECount in order to materialize a GEP.
// Note that for without EnableIVRewrite, we never run SCEVExpander on a
// pointer type, because we must preserve the existing GEPs. Instead we
// directly generate a GEP later.
if (CmpIndVar->getType()->isPointerTy()) {
CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
}
// For integer types, truncate the IV before computing IVInit + BECount.
else {
if (SE->getTypeSizeInBits(IVInit->getType())
> SE->getTypeSizeInBits(CmpTy))
IVInit = SE->getTruncateExpr(IVInit, CmpTy);
IVLimit = SE->getAddExpr(IVInit, IVLimit);
}
}
// Expand the code for the iteration count.
IRBuilder<> Builder(BI);
assert(SE->isLoopInvariant(IVLimit, L) &&
"Computed iteration count is not loop invariant!");
assert((EnableIVRewrite || !IVLimit->getType()->isPointerTy()) &&
"Should not expand pointer types" );
Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
// Create a gep for IVInit + IVLimit from on an existing pointer base.
//
// In the presence of null pointer values, the SCEV expression may be an
// integer type while the IV is a pointer type. Ensure that the compare
// operands are always the same type by checking the IV type here.
if (CmpIndVar->getType()->isPointerTy()) {
Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
assert(SE->getSizeOfExpr(
cast<PointerType>(IVStart->getType())->getElementType())->isOne()
&& "unit stride pointer IV must be i8*");
Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
Builder.SetInsertPoint(BI);
}
Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
&& "genLoopLimit missed a cast");
// Insert a new icmp_ne or icmp_eq instruction before the branch.
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
ICmpInst::Predicate P;
if (L->contains(BI->getSuccessor(0)))
P = ICmpInst::ICMP_NE;
@ -1621,11 +1662,13 @@ LinearFunctionTestReplace(Loop *L,
<< " op:\t"
<< (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
<< " RHS:\t" << *ExitCnt << "\n"
<< " Expr:\t" << *IVLimit << "\n");
<< " IVCount:\t" << *IVCount << "\n");
IRBuilder<> Builder(BI);
if (SE->getTypeSizeInBits(CmpIndVar->getType())
> SE->getTypeSizeInBits(CmpTy)) {
CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
> SE->getTypeSizeInBits(ExitCnt->getType())) {
CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
"lftr.wideiv");
}
Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");

View File

@ -1,21 +1,45 @@
; RUN: opt < %s -indvars -S -enable-iv-rewrite=true | FileCheck %s
; RUN: opt < %s -indvars -S -enable-iv-rewrite=false "-default-data-layout=e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" | FileCheck %s
; RUN: opt < %s -indvars -S -enable-iv-rewrite=true "-default-data-layout=e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" | FileCheck %s
; RUN: opt < %s -indvars -S -enable-iv-rewrite=false "-default-data-layout=e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32" | FileCheck %s
; RUN: opt < %s -indvars -S -enable-iv-rewrite=true "-default-data-layout=e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32" | FileCheck %s
;
; PR11279: Assertion !IVLimit->getType()->isPointerTy()
;
; Test a non-integer BECount. It doesn't make sense, but that's what
; falls out of SCEV. Since it's an i8*, we never adjust in a way that
; would convert it to an integer type.
;
; enable-iv-rewrite=false does not currently perform LFTR when the the
; taken count is a pointer expression, but that will change son.
; Test LinearFunctionTestReplace of a pointer-type loop counter. Note
; that BECount may or may not be a pointer type. A pointer type
; BECount doesn't really make sense, but that's what falls out of
; SCEV. Since it's an i8*, it has unit stride so we never adjust the
; SCEV expression in a way that would convert it to an integer type.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-darwin"
; CHECK: @test8
; CHECK: @testnullptrptr
; CHECK: loop:
; CHECK: icmp ne
define i8 @test8(i8* %buf, i8* %end) nounwind {
define i8 @testnullptrptr(i8* %buf, i8* %end) nounwind {
br label %loopguard
loopguard:
%guard = icmp ult i8* null, %end
br i1 %guard, label %preheader, label %exit
preheader:
br label %loop
loop:
%p.01.us.us = phi i8* [ null, %preheader ], [ %gep, %loop ]
%s = phi i8 [0, %preheader], [%snext, %loop]
%gep = getelementptr inbounds i8* %p.01.us.us, i64 1
%snext = load i8* %gep
%cmp = icmp ult i8* %gep, %end
br i1 %cmp, label %loop, label %exit
exit:
ret i8 %snext
}
; CHECK: @testptrptr
; CHECK: loop:
; CHECK: icmp ne
define i8 @testptrptr(i8* %buf, i8* %end) nounwind {
br label %loopguard
loopguard:
@ -36,3 +60,83 @@ loop:
exit:
ret i8 %snext
}
; CHECK: @testnullptrint
; CHECK: loop:
; CHECK: icmp ne
define i8 @testnullptrint(i8* %buf, i8* %end) nounwind {
br label %loopguard
loopguard:
%bi = ptrtoint i8* %buf to i32
%ei = ptrtoint i8* %end to i32
%cnt = sub i32 %ei, %bi
%guard = icmp ult i32 0, %cnt
br i1 %guard, label %preheader, label %exit
preheader:
br label %loop
loop:
%p.01.us.us = phi i8* [ null, %preheader ], [ %gep, %loop ]
%iv = phi i32 [ 0, %preheader ], [ %ivnext, %loop ]
%s = phi i8 [0, %preheader], [%snext, %loop]
%gep = getelementptr inbounds i8* %p.01.us.us, i64 1
%snext = load i8* %gep
%ivnext = add i32 %iv, 1
%cmp = icmp ult i32 %ivnext, %cnt
br i1 %cmp, label %loop, label %exit
exit:
ret i8 %snext
}
; CHECK: @testptrint
; CHECK: loop:
; CHECK: icmp ne
define i8 @testptrint(i8* %buf, i8* %end) nounwind {
br label %loopguard
loopguard:
%bi = ptrtoint i8* %buf to i32
%ei = ptrtoint i8* %end to i32
%cnt = sub i32 %ei, %bi
%guard = icmp ult i32 %bi, %cnt
br i1 %guard, label %preheader, label %exit
preheader:
br label %loop
loop:
%p.01.us.us = phi i8* [ %buf, %preheader ], [ %gep, %loop ]
%iv = phi i32 [ %bi, %preheader ], [ %ivnext, %loop ]
%s = phi i8 [0, %preheader], [%snext, %loop]
%gep = getelementptr inbounds i8* %p.01.us.us, i64 1
%snext = load i8* %gep
%ivnext = add i32 %iv, 1
%cmp = icmp ult i32 %ivnext, %cnt
br i1 %cmp, label %loop, label %exit
exit:
ret i8 %snext
}
; IV and BECount have two different pointer types here.
define void @testnullptr([512 x i8]* %base) nounwind {
entry:
%add.ptr1603 = getelementptr [512 x i8]* %base, i64 0, i64 512
br label %preheader
preheader:
%cmp1604192 = icmp ult i8* undef, %add.ptr1603
br i1 %cmp1604192, label %for.body, label %for.end1609
for.body:
%r.17193 = phi i8* [ %incdec.ptr1608, %for.body ], [ null, %preheader ]
%incdec.ptr1608 = getelementptr i8* %r.17193, i64 1
%cmp1604 = icmp ult i8* %incdec.ptr1608, %add.ptr1603
br i1 %cmp1604, label %for.body, label %for.end1609
for.end1609:
unreachable
}