Substantial changes to refactor LLI to incorporate both the Jello JIT and

the traditional LLI interpreter

llvm-svn: 5125
This commit is contained in:
Chris Lattner 2002-12-23 23:59:41 +00:00
parent 1bb5148632
commit 42057e4d2a
9 changed files with 147 additions and 415 deletions

View File

@ -6,6 +6,8 @@
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
@ -13,7 +15,6 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
#include <math.h> // For fmod
@ -23,11 +24,14 @@ using std::vector;
using std::cout;
using std::cerr;
Interpreter *TheEE = 0;
namespace {
Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
cl::opt<bool>
QuietMode("quiet", cl::desc("Do not emit any non-program output"));
QuietMode("quiet", cl::desc("Do not emit any non-program output"),
cl::init(true));
cl::alias
QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));
@ -43,10 +47,8 @@ namespace {
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
TargetData TD("lli Interpreter");
CachedWriter CW; // Object to accelerate printing of LLVM
#ifdef PROFILE_STRUCTURE_FIELDS
static cl::opt<bool>
ProfileStructureFields("profilestructfields",
@ -87,48 +89,12 @@ static unsigned getOperandSlot(Value *V) {
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
// Operations used by constant expr implementations...
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
ExecutionContext &SF);
static GenericValue executeGEPOperation(Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd,
ExecutionContext &SF);
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF);
static GenericValue getConstantValue(const Constant *C) {
GenericValue Result;
switch (C->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C)) {
Result.PointerVal = 0;
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
GlobalAddress *Address =
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
Result.PointerVal = (PointerTy)Address->Ptr;
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
}
return Result;
}
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
@ -136,7 +102,7 @@ static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
case Instruction::Cast:
return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
CE->op_end(), SF);
case Instruction::Add:
return executeAddInst(getOperandValue(CE->getOperand(0), SF),
@ -148,13 +114,9 @@ static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
{ GenericValue V; return V; }
}
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return getConstantValue(CPV);
return TheEE->getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalAddress *Address =
(GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID);
GenericValue Result;
Result.PointerVal = (PointerTy)(GenericValue*)Address->Ptr;
return Result;
return PTOGV(TheEE->getPointerToGlobal(GV));
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned OpSlot = getOperandSlot(V);
@ -201,85 +163,12 @@ static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
//===----------------------------------------------------------------------===//
void Interpreter::initializeExecutionEngine() {
TheEE = this;
AnnotationManager::registerAnnotationFactory(MethodInfoAID,
&MethodInfo::Create);
AnnotationManager::registerAnnotationFactory(GlobalAddressAID,
&GlobalAddress::Create);
initializeSignalHandlers();
}
static void StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty);
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
static void InitializeMemory(const Constant *Init, char *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
switch (Init->getType()->getPrimitiveID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
Addr+SL->MemberOffsets[i]);
return;
}
default:
CW << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
assert(AID == GlobalAddressAID);
// This annotation will only be created on GlobalValue objects...
GlobalValue *GVal = cast<GlobalValue>((Value*)O);
if (isa<Function>(GVal)) {
// The GlobalAddress object for a function is just a pointer to function
// itself. Don't delete it when the annotation is gone though!
return new GlobalAddress(GVal, false);
}
// Handle the case of a global variable...
assert(isa<GlobalVariable>(GVal) &&
"Global value found that isn't a function or global variable!");
GlobalVariable *GV = cast<GlobalVariable>(GVal);
// First off, we must allocate space for the global variable to point at...
const Type *Ty = GV->getType()->getElementType(); // Type to be allocated
// Allocate enough memory to hold the type...
void *Addr = calloc(1, TD.getTypeSize(Ty));
assert(Addr != 0 && "Null pointer returned by malloc!");
// Initialize the memory if there is an initializer...
if (GV->hasInitializer())
InitializeMemory(GV->getInitializer(), (char*)Addr);
return new GlobalAddress(Addr, true); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
@ -760,8 +649,7 @@ void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) {
// FIXME: Don't use CALLOC, use a tainted malloc.
void *Memory = calloc(NumElements, TD.getTypeSize(Ty));
GenericValue Result;
Result.PointerVal = (PointerTy)Memory;
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
@ -773,13 +661,13 @@ static void executeFreeInst(FreeInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I.getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free((void*)Value.PointerVal); // Free memory
free(GVTOP(Value)); // Free memory
}
// getElementOffset - The workhorse for getelementptr.
//
static GenericValue executeGEPOperation(Value *Ptr, User::op_iterator I,
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
User::op_iterator E,
ExecutionContext &SF) {
assert(isa<PointerType>(Ptr->getType()) &&
@ -834,13 +722,13 @@ static GenericValue executeGEPOperation(Value *Ptr, User::op_iterator I,
}
static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) {
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
I.idx_begin(), I.idx_end(), SF), SF);
}
static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
void Interpreter::executeLoadInst(LoadInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)SRC.PointerVal;
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
GenericValue Result;
if (TD.isLittleEndian()) {
@ -910,102 +798,14 @@ static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
SetValue(&I, Result, SF);
}
static void StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (TD.isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
cout << "Cannot store value of type " << Ty << "!\n";
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
cout << "Cannot store value of type " << Ty << "!\n";
}
}
}
static void executeStoreInst(StoreInst &I, ExecutionContext &SF) {
void Interpreter::executeStoreInst(StoreInst &I, ExecutionContext &SF) {
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
StoreValueToMemory(Val, (GenericValue *)SRC.PointerVal,
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
}
GenericValue Interpreter::CreateArgv(const std::vector<std::string> &InputArgv){
// Pointers are 64 bits...
PointerTy *Result = new PointerTy[InputArgv.size()+1]; // 64 bit assumption
for (unsigned i = 0; i < InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
GenericValue GV; GV.PointerVal = (PointerTy)Dest;
// Endian safe: Result[i] = (PointerTy)Dest;
StoreValueToMemory(GV, (GenericValue*)(Result+i),
Type::LongTy); // 64 bit assumption
}
Result[InputArgv.size()] = 0;
GenericValue GV; GV.PointerVal = (PointerTy)Result;
return GV;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
@ -1022,7 +822,7 @@ void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) {
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
callMethod((Function*)SRC.PointerVal, ArgVals);
callMethod((Function*)GVTOP(SRC), ArgVals);
}
static void executePHINode(PHINode &I, ExecutionContext &SF) {
@ -1433,7 +1233,7 @@ void Interpreter::printValue(const Type *Ty, GenericValue V) {
case Type::ULongTyID: cout << (unsigned long)V.ULongVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
case Type::PointerTyID:cout << (void*)V.PointerVal; break;
case Type::PointerTyID:cout << (void*)GVTOP(V); break;
default:
cout << "- Don't know how to print value of this type!";
break;

View File

@ -90,32 +90,4 @@ static AnnotationID BreakpointAID(
// Just use an Annotation directly, Breakpoint is currently just a marker
//===----------------------------------------------------------------------===//
// Support for the GlobalAddress annotation
//===----------------------------------------------------------------------===//
// This annotation (attached only to GlobalValue objects) is used to hold the
// address of the chunk of memory that represents a global value. For
// Functions, this pointer is the Function object pointer that represents it.
// For global variables, this is the dynamically allocated (and potentially
// initialized) chunk of memory for the global. This annotation is created on
// demand.
//
static AnnotationID GlobalAddressAID(
AnnotationManager::getID("Interpreter::GlobalAddress"));
struct GlobalAddress : public Annotation {
void *Ptr; // The pointer itself
bool Delete; // Should I delete them memory on destruction?
GlobalAddress(void *ptr, bool d) : Annotation(GlobalAddressAID), Ptr(ptr),
Delete(d) {}
~GlobalAddress() { if (Delete) free(Ptr); }
// Create - Factory function to allow GlobalAddress annotations to be
// created on demand.
//
static Annotation *Create(AnnotationID AID, const Annotable *O, void *);
};
#endif

View File

@ -12,6 +12,7 @@
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Target/TargetData.h"
@ -23,8 +24,6 @@
using std::vector;
using std::cout;
extern TargetData TD;
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
static std::map<const Function *, ExFunc> Functions;
static std::map<std::string, ExFunc> FuncNames;
@ -440,8 +439,8 @@ static FILE *getFILE(PointerTy Ptr) {
static PointerTy IOBBase = 0;
static unsigned FILESize;
if (LastMod != TheInterpreter->getModule()) { // Module change or initialize?
Module *M = LastMod = TheInterpreter->getModule();
if (LastMod != &TheInterpreter->getModule()) { // Module change or initialize?
Module *M = LastMod = &TheInterpreter->getModule();
// Check to see if the currently loaded module contains an __iob symbol...
GlobalVariable *IOB = 0;
@ -456,6 +455,7 @@ static FILE *getFILE(PointerTy Ptr) {
if (IOB) break;
}
#if 0 /// FIXME! __iob support for LLI
// If we found an __iob symbol now, find out what the actual address it's
// held in is...
if (IOB) {
@ -472,6 +472,7 @@ static FILE *getFILE(PointerTy Ptr) {
else
FILESize = 16*8; // Default size
}
#endif
}
// Check to see if this is a reference to __iob...

View File

@ -10,36 +10,23 @@
// Uncomment this line to enable profiling of structure field accesses.
//#define PROFILE_STRUCTURE_FIELDS 1
#include "llvm/Module.h"
#include "../ExecutionEngine.h"
#include "Support/DataTypes.h"
#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Target/TargetData.h"
#include "llvm/BasicBlock.h"
#include "../GenericValue.h"
extern CachedWriter CW; // Object to accellerate printing of LLVM
extern CachedWriter CW; // Object to accelerate printing of LLVM
struct MethodInfo; // Defined in ExecutionAnnotations.h
class CallInst;
class ReturnInst;
class BranchInst;
class LoadInst;
class StoreInst;
class AllocationInst;
typedef uint64_t PointerTy;
union GenericValue {
bool BoolVal;
unsigned char UByteVal;
signed char SByteVal;
unsigned short UShortVal;
signed short ShortVal;
unsigned int UIntVal;
signed int IntVal;
uint64_t ULongVal;
int64_t LongVal;
double DoubleVal;
float FloatVal;
PointerTy PointerVal;
unsigned char Untyped[8];
};
// AllocaHolder - Object to track all of the blocks of memory allocated by
// alloca. When the function returns, this object is poped off the execution
// stack, which causes the dtor to be run, which frees all the alloca'd memory.
@ -90,25 +77,31 @@ struct ExecutionContext {
// Interpreter - This class represents the entirety of the interpreter.
//
class Interpreter {
Module *CurMod; // The current Module being executed (0 if none)
class Interpreter : public ExecutionEngine {
int ExitCode; // The exit code to be returned by the lli util
bool Debug; // Debug mode enabled?
bool Profile; // Profiling enabled?
bool Trace; // Tracing enabled?
int CurFrame; // The current stack frame being inspected
TargetData TD;
// The runtime stack of executing code. The top of the stack is the current
// function record.
std::vector<ExecutionContext> ECStack;
public:
Interpreter();
inline ~Interpreter() { CW.setModule(0); delete CurMod; }
Interpreter(Module *M, unsigned Config, bool DebugMode, bool TraceMode);
inline ~Interpreter() { CW.setModule(0); }
// getExitCode - return the code that should be the exit code for the lli
// utility.
inline int getExitCode() const { return ExitCode; }
inline Module *getModule() const { return CurMod; }
/// run - Start execution with the specified function and arguments.
///
virtual int run(const std::string &FnName,
const std::vector<std::string> &Args);
// enableProfiling() - Turn profiling on, clear stats?
void enableProfiling() { Profile = true; }
@ -117,8 +110,6 @@ public:
void handleUserInput();
// User Interation Methods...
void loadModule(const std::string &Filename);
bool flushModule();
bool callMethod(const std::string &Name); // return true on failure
void setBreakpoint(const std::string &Name);
void infoValue(const std::string &Name);
@ -128,7 +119,6 @@ public:
bool callMainMethod(const std::string &MainName,
const std::vector<std::string> &InputFilename);
GenericValue CreateArgv(const std::vector<std::string> &InputArgv);
void list(); // Do the 'list' command
void printStackTrace(); // Do the 'backtrace' command
@ -161,7 +151,17 @@ public:
//
inline bool isStopped() const { return !ECStack.empty(); }
//FIXME: private:
public:
GenericValue executeGEPOperation(Value *Ptr, User::op_iterator I,
User::op_iterator E, ExecutionContext &SF);
void executeLoadInst(LoadInst &I, ExecutionContext &SF);
void executeStoreInst(StoreInst &I, ExecutionContext &SF);
private: // Helper functions
void *getPointerToFunction(const Function *F) { return (void*)F; }
// getCurrentExecutablePath() - Return the directory that the lli executable
// lives in.
//

View File

@ -7,6 +7,7 @@
#include "Interpreter.h"
#include "llvm/SymbolTable.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Module.h"
#include <iostream>
using std::cout;
@ -38,7 +39,7 @@ std::vector<Value*> Interpreter::LookupMatchingNames(const std::string &Name) {
Function *CurMeth = getCurrentMethod();
if (CurMeth) ::LookupMatchingNames(Name, CurMeth->getSymbolTable(), Results);
if (CurMod ) ::LookupMatchingNames(Name, CurMod ->getSymbolTable(), Results);
::LookupMatchingNames(Name, getModule().getSymbolTable(), Results);
return Results;
}

View File

@ -7,6 +7,7 @@
#include "Interpreter.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Transforms/Utils/Linker.h"
#include <algorithm>
using std::string;
@ -18,8 +19,8 @@ enum CommandID {
Print, Info, List, StackTrace, Up, Down, // Inspection
Next, Step, Run, Finish, Call, // Control flow changes
Break, Watch, // Debugging
Load, Flush,
TraceOpt, ProfileOpt // Toggle features
Flush,
TraceOpt, // Toggle features
};
// CommandTable - Build a lookup table for the commands available to the user...
@ -53,11 +54,9 @@ static struct CommandTableElement {
{ "break" , Break }, { "b", Break },
{ "watch" , Watch },
{ "load" , Load },
{ "flush" , Flush },
{ "trace" , TraceOpt },
{ "profile" , ProfileOpt },
};
static CommandTableElement *CommandTableEnd =
CommandTable+sizeof(CommandTable)/sizeof(CommandTable[0]);
@ -90,11 +89,6 @@ void Interpreter::handleUserInput() {
switch (E->CID) {
case Quit: UserQuit = true; break;
case Load:
cin >> Command;
loadModule(Command);
break;
case Flush: flushModule(); break;
case Print:
cin >> Command;
print(Command);
@ -132,11 +126,6 @@ void Interpreter::handleUserInput() {
cout << "Tracing " << (Trace ? "enabled\n" : "disabled\n");
break;
case ProfileOpt:
Profile = !Profile;
cout << "Profiling " << (Trace ? "enabled\n" : "disabled\n");
break;
default:
cout << "Command '" << Command << "' unimplemented!\n";
break;
@ -145,61 +134,6 @@ void Interpreter::handleUserInput() {
} while (!UserQuit);
}
//===----------------------------------------------------------------------===//
// loadModule - Load a new module to execute...
//
void Interpreter::loadModule(const string &Filename) {
string ErrorMsg;
if (CurMod && !flushModule()) return; // Kill current execution
CurMod = ParseBytecodeFile(Filename, &ErrorMsg);
if (CurMod == 0) {
cout << "Error parsing '" << Filename << "': No module loaded: "
<< ErrorMsg << "\n";
return;
}
CW.setModule(CurMod); // Update Writer
#if 0
string RuntimeLib = getCurrentExecutablePath();
if (!RuntimeLib.empty()) RuntimeLib += "/";
RuntimeLib += "RuntimeLib.bc";
if (Module *SupportLib = ParseBytecodeFile(RuntimeLib, &ErrorMsg)) {
if (LinkModules(CurMod, SupportLib, &ErrorMsg))
std::cerr << "Error Linking runtime library into current module: "
<< ErrorMsg << "\n";
} else {
std::cerr << "Error loading runtime library '"+RuntimeLib+"': "
<< ErrorMsg << "\n";
}
#endif
}
//===----------------------------------------------------------------------===//
// flushModule - Return true if the current program has been unloaded.
//
bool Interpreter::flushModule() {
if (CurMod == 0) {
cout << "Error flushing: No module loaded!\n";
return false;
}
if (!ECStack.empty()) {
// TODO: if use is not sure, return false
cout << "Killing current execution!\n";
ECStack.clear();
CurFrame = -1;
}
CW.setModule(0);
delete CurMod;
CurMod = 0;
ExitCode = 0;
return true;
}
//===----------------------------------------------------------------------===//
// setBreakpoint - Enable a breakpoint at the specified location
//
@ -272,7 +206,7 @@ bool Interpreter::callMainMethod(const string &Name,
return true;
}
Args.push_back(CreateArgv(InputArgv));
Args.push_back(PTOGV(CreateArgv(InputArgv)));
}
// fallthrough
case 1:

View File

@ -1,6 +1,10 @@
LEVEL = ../..
TOOLNAME = lli
USEDLIBS = bcreader vmcore analysis.a support.a target.a transforms.a
PARALLEL_DIRS = Interpreter JIT
JITLIBS = lli-jit codegen x86 scalaropts.a
USEDLIBS = lli-interpreter $(JITLIBS) bcreader vmcore analysis.a support.a target.a
#transforms.a
# Have gcc tell the linker to export symbols from the program so that
# dynamically loaded modules can be linked against them.

View File

@ -1,6 +1,10 @@
LEVEL = ../..
TOOLNAME = lli
USEDLIBS = bcreader vmcore analysis.a support.a target.a transforms.a
PARALLEL_DIRS = Interpreter JIT
JITLIBS = lli-jit codegen x86 scalaropts.a
USEDLIBS = lli-interpreter $(JITLIBS) bcreader vmcore analysis.a support.a target.a
#transforms.a
# Have gcc tell the linker to export symbols from the program so that
# dynamically loaded modules can be linked against them.

View File

@ -1,85 +1,101 @@
//===----------------------------------------------------------------------===//
// LLVM INTERPRETER/DEBUGGER/PROFILER UTILITY
//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
//
// This utility is an interactive frontend to almost all other LLVM
// functionality. It may be used as an interpreter to run code, a debugger to
// find problems, or a profiler to analyze execution frequencies.
// This utility provides a way to execute LLVM bytecode without static
// compilation. This consists of a very simple and slow (but portable)
// interpreter, along with capability for system specific dynamic compilers. At
// runtime, the fastest (stable) execution engine is selected to run the
// program. This means the JIT compiler for the current platform if it's
// available.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionEngine.h"
#include "Support/CommandLine.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetMachineImpls.h"
static cl::opt<std::string>
InputFile(cl::desc("<input bytecode>"), cl::Positional, cl::init("-"));
namespace {
cl::opt<std::string>
InputFile(cl::desc("<input bytecode>"), cl::Positional, cl::init("-"));
static cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
static cl::opt<std::string>
MainFunction ("f", cl::desc("Function to execute"), cl::init("main"),
cl::opt<std::string>
MainFunction ("f", cl::desc("Function to execute"), cl::init("main"),
cl::value_desc("function name"));
static cl::opt<bool>
DebugMode("d", cl::desc("Start program in debugger"));
cl::opt<bool> DebugMode("d", cl::desc("Start program in debugger"));
static cl::opt<bool>
TraceMode("trace", cl::desc("Enable Tracing"));
static cl::opt<bool>
ProfileMode("profile", cl::desc("Enable Profiling [unimp]"));
cl::opt<bool> TraceMode("trace", cl::desc("Enable Tracing"));
cl::opt<bool> ForceInterpreter("force-interpreter",
cl::desc("Force interpretation: disable JIT"),
cl::init(true));
}
//===----------------------------------------------------------------------===//
// Interpreter ctor - Initialize stuff
// ExecutionEngine Class Implementation
//
Interpreter::Interpreter() : ExitCode(0), Profile(ProfileMode),
Trace(TraceMode), CurFrame(-1) {
CurMod = 0;
loadModule(InputFile);
// Initialize the "backend"
initializeExecutionEngine();
initializeExternalMethods();
ExecutionEngine::~ExecutionEngine() {
delete &CurMod;
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char** argv) {
cl::ParseCommandLineOptions(argc, argv, " llvm interpreter\n");
cl::ParseCommandLineOptions(argc, argv,
" llvm interpreter & dynamic compiler\n");
// Add the module name to the start of the argv vector...
//
InputArgv.insert(InputArgv.begin(), InputFile);
// Create the interpreter...
Interpreter I;
// Handle alternate names of the program. If started as llp, enable profiling
// if started as ldb, enable debugging...
//
if (argv[0] == "ldb") // TODO: Obviously incorrect, but you get the idea
DebugMode = true;
else if (argv[0] == "llp")
ProfileMode = true;
// If running with the profiler, enable it now...
if (ProfileMode) I.enableProfiling();
if (TraceMode) I.enableTracing();
// Start interpreter into the main function...
//
if (!I.callMainMethod(MainFunction, InputArgv) && !DebugMode) {
// If not in debug mode and if the call succeeded, run the code now...
I.run();
// Load the bytecode...
string ErrorMsg;
Module *M = ParseBytecodeFile(InputFile, &ErrorMsg);
if (M == 0) {
cout << "Error parsing '" << InputFile << "': "
<< ErrorMsg << "\n";
exit(1);
}
// If debug mode, allow the user to interact... also, if the user pressed
// ctrl-c or execution hit an error, enter the event loop...
if (DebugMode || I.isStopped())
I.handleUserInput();
#if 0
// Link in the runtime library for LLI...
string RuntimeLib = getCurrentExecutablePath();
if (!RuntimeLib.empty()) RuntimeLib += "/";
RuntimeLib += "RuntimeLib.bc";
// Return the status code of the program executed...
return I.getExitCode();
if (Module *SupportLib = ParseBytecodeFile(RuntimeLib, &ErrorMsg)) {
if (LinkModules(M, SupportLib, &ErrorMsg))
std::cerr << "Error Linking runtime library into current module: "
<< ErrorMsg << "\n";
} else {
std::cerr << "Error loading runtime library '"+RuntimeLib+"': "
<< ErrorMsg << "\n";
}
#endif
// FIXME: This should look at the PointerSize and endianness of the bytecode
// file to determine the endianness and pointer size of target machine to use.
unsigned Config = TM::PtrSize64 | TM::BigEndian;
ExecutionEngine *EE = 0;
// If there is nothing that is forcing us to use the interpreter, make a JIT.
if (!ForceInterpreter && !DebugMode && !TraceMode)
EE = ExecutionEngine::createJIT(M, Config);
// If we can't make a JIT, make an interpreter instead.
if (EE == 0)
EE = ExecutionEngine::createInterpreter(M, Config, DebugMode, TraceMode);
// Add the module name to the start of the argv vector...
InputArgv.insert(InputArgv.begin(), InputFile);
// Run the main function!
int ExitCode = EE->run(MainFunction, InputArgv);
// Now that we are done executing the program, shut down the execution engine
delete EE;
return ExitCode;
}