Add trace accessor methods, implement primitive if-conversion heuristic.

Compare the critical paths of the two traces through an if-conversion
candidate. If the difference is larger than the branch brediction
penalty, reject the if-conversion. If would never pay.

llvm-svn: 161433
This commit is contained in:
Jakob Stoklund Olesen 2012-08-07 18:02:19 +00:00
parent a22a0e50a1
commit 438bc30c3d
3 changed files with 84 additions and 21 deletions

View File

@ -601,10 +601,24 @@ void EarlyIfConverter::invalidateTraces() {
bool EarlyIfConverter::shouldConvertIf() {
if (!MinInstr)
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
DEBUG({
dbgs() << MinInstr->getTrace(IfConv.Head);
MinInstr->print(dbgs());
});
// MCSchedModel doesn't yet provide a misprediction penalty.
unsigned MispredictPenalty = 10;
// Compare the critical path through TBB and FBB. If the difference is
// greater than the branch misprediction penalty, it would never pay to
// if-convert. The triangle/diamond topology guarantees that these traces
// have the same head and tail, so they can be compared.
MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.TBB);
MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.FBB);
DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
unsigned TBBCrit = TBBTrace.getCriticalPath();
unsigned FBBCrit = FBBTrace.getCriticalPath();
unsigned ExtraCrit = TBBCrit > FBBCrit ? TBBCrit-FBBCrit : FBBCrit-TBBCrit;
if (ExtraCrit >= MispredictPenalty) {
DEBUG(dbgs() << "Critical path difference too large.\n");
return false;
}
return true;
}

View File

@ -14,6 +14,7 @@
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
@ -1017,6 +1018,29 @@ MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
return Trace(*this, BlockInfo[MBB->getNumber()]);
}
unsigned
MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
assert(MI && "Not an instruction.");
assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
"MI must be in the trace center block");
InstrCycles Cyc = getInstrCycles(MI);
return getCriticalPath() - (Cyc.Depth + Cyc.Height);
}
unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
// For now, we compute the resource depth from instruction count / issue
// width. Eventually, we should compute resource depth per functional unit
// and return the max.
unsigned Instrs = TBI.InstrDepth;
if (Bottom)
Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
if (const MCSchedModel *Model = TE.MTM.ItinData->SchedModel)
if (Model->IssueWidth != 0)
return Instrs / Model->IssueWidth;
// Assume issue width 1 without a schedule model.
return Instrs;
}
void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
OS << getName() << " ensemble:\n";
for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {

View File

@ -188,23 +188,6 @@ public:
void print(raw_ostream&) const;
};
/// A trace represents a plausible sequence of executed basic blocks that
/// passes through the current basic block one. The Trace class serves as a
/// handle to internal cached data structures.
class Trace {
Ensemble &TE;
TraceBlockInfo &TBI;
public:
explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
void print(raw_ostream&) const;
/// Compute the total number of instructions in the trace.
unsigned getInstrCount() const {
return TBI.InstrDepth + TBI.InstrHeight;
}
};
/// InstrCycles represents the cycle height and depth of an instruction in a
/// trace.
struct InstrCycles {
@ -218,6 +201,48 @@ public:
unsigned Height;
};
/// A trace represents a plausible sequence of executed basic blocks that
/// passes through the current basic block one. The Trace class serves as a
/// handle to internal cached data structures.
class Trace {
Ensemble &TE;
TraceBlockInfo &TBI;
unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; }
public:
explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
void print(raw_ostream&) const;
/// Compute the total number of instructions in the trace.
unsigned getInstrCount() const {
return TBI.InstrDepth + TBI.InstrHeight;
}
/// Return the resource dpeth of the top/bottom of the trace center block.
/// This is the number of cycles required to execute all instructions from
/// the trace head to the trace center block. The resource depth only
/// considers execution resources, it ignores data dependencies.
/// When Bottom is set, instructions in the trace center block are included.
unsigned getResourceDepth(bool Bottom) const;
/// Return the length of the (data dependency) critical path through the
/// trace.
unsigned getCriticalPath() const { return TBI.CriticalPath; }
/// Return the depth and height of MI. The depth is only valid for
/// instructions in or above the trace center block. The height is only
/// valid for instructions in or below the trace center block.
InstrCycles getInstrCycles(const MachineInstr *MI) const {
return TE.Cycles.lookup(MI);
}
/// Return the slack of MI. This is the number of cycles MI can be delayed
/// before the critical path becomes longer.
/// MI must be an instruction in the trace center block.
unsigned getInstrSlack(const MachineInstr *MI) const;
};
/// A trace ensemble is a collection of traces selected using the same
/// strategy, for example 'minimum resource height'. There is one trace for
/// every block in the function.