[X86] - Catch extra combine opportunities for redundant imuls.

When we fold "mul ((add x, c1), c1)" -> "add ((mul x, c2), c1*c2)", we bail if (add x, c1) has multiple
users which would result in an extra add instruction.
In such cases, this patch adds a check to see if we can eliminate a multiply instruction in exchange for the extra add.

I also added the capability of doing the existing optimization with non-splatted vectors (splatted also works).

Differential Revision: http://reviews.llvm.org/D13740

llvm-svn: 251028
This commit is contained in:
Zia Ansari 2015-10-22 16:14:45 +00:00
parent b8e5332e87
commit 4fd5110a5a
2 changed files with 255 additions and 8 deletions

View File

@ -403,6 +403,14 @@ namespace {
unsigned SequenceNum;
};
/// This is a helper function for visitMUL to check the profitability
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// MulNode is the original multiply, AddNode is (add x, c1),
/// and ConstNode is c2.
bool isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode);
/// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
/// constant build_vector of the stored constant values in Stores.
SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
@ -2139,14 +2147,15 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
(isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
isa<ConstantSDNode>(N0.getOperand(1))))
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
N0.getOperand(1), N1));
if (isConstantIntBuildVectorOrConstantInt(N1) &&
N0.getOpcode() == ISD::ADD &&
isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
isMulAddWithConstProfitable(N, N0, N1))
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
N0.getOperand(0), N1),
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
N0.getOperand(1), N1));
// reassociate mul
if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
@ -10839,6 +10848,81 @@ struct BaseIndexOffset {
};
} // namespace
// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
// and ConstNode is c2.
//
// If the (add x, c1) has multiple uses, we could increase
// the number of adds if we make this transformation.
// It would only be worth doing this if we can remove a
// multiply in the process. Check for that here.
// To illustrate:
// (A + c1) * c3
// (A + c2) * c3
// We're checking for cases where we have common "c3 * A" expressions.
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
SDValue &AddNode,
SDValue &ConstNode) {
APInt Val;
// If the add only has one use, this would be OK to do.
if (AddNode.getNode()->hasOneUse())
return true;
// Walk all the users of the constant with which we're multiplying.
for (SDNode *Use : ConstNode->uses()) {
if (Use == MulNode) // This use is the one we're on right now. Skip it.
continue;
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
SDNode *OtherOp;
SDNode *MulVar = AddNode.getOperand(0).getNode();
// OtherOp is what we're multiplying against the constant.
if (Use->getOperand(0) == ConstNode)
OtherOp = Use->getOperand(1).getNode();
else
OtherOp = Use->getOperand(0).getNode();
// Check to see if multiply is with the same operand of our "add".
//
// ConstNode = CONST
// Use = ConstNode * A <-- visiting Use. OtherOp is A.
// ...
// AddNode = (A + c1) <-- MulVar is A.
// = AddNode * ConstNode <-- current visiting instruction.
//
// If we make this transformation, we will have a common
// multiply (ConstNode * A) that we can save.
if (OtherOp == MulVar)
return true;
// Now check to see if a future expansion will give us a common
// multiply.
//
// ConstNode = CONST
// AddNode = (A + c1)
// ... = AddNode * ConstNode <-- current visiting instruction.
// ...
// OtherOp = (A + c2)
// Use = OtherOp * ConstNode <-- visiting Use.
//
// If we make this transformation, we will have a common
// multiply (CONST * A) after we also do the same transformation
// to the "t2" instruction.
if (OtherOp->getOpcode() == ISD::ADD &&
isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
OtherOp->getOperand(0).getNode() == MulVar)
return true;
}
}
// Didn't find a case where this would be profitable.
return false;
}
SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
SDLoc SL,
ArrayRef<MemOpLink> Stores,

View File

@ -0,0 +1,163 @@
; RUN: llc < %s -mattr=sse2 -mtriple=i386-unknown-linux-gnu | FileCheck %s
; Source file looks something like this:
;
; typedef int AAA[100][100];
;
; void testCombineMultiplies(AAA a,int lll)
; {
; int LOC = lll + 5;
;
; a[LOC][LOC] = 11;
;
; a[LOC][20] = 22;
; a[LOC+20][20] = 33;
; }
;
; We want to make sure we don't generate 2 multiply instructions,
; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
; should combine the instructions in such a way to avoid the extra
; multiply.
;
; Output looks roughly like this:
;
; movl 8(%esp), %eax
; movl 12(%esp), %ecx
; imull $400, %ecx, %edx # imm = 0x190
; leal (%edx,%eax), %esi
; movl $11, 2020(%esi,%ecx,4)
; movl $22, 2080(%edx,%eax)
; movl $33, 10080(%edx,%eax)
;
; CHECK-LABEL: testCombineMultiplies
; CHECK: imull $400, [[ARG1:%[a-z]+]], [[MUL:%[a-z]+]] # imm = 0x190
; CHECK-NEXT: leal ([[MUL]],[[ARG2:%[a-z]+]]), [[LEA:%[a-z]+]]
; CHECK-NEXT: movl $11, {{[0-9]+}}([[LEA]],[[ARG1]],4)
; CHECK-NEXT: movl $22, {{[0-9]+}}([[MUL]],[[ARG2]])
; CHECK-NEXT: movl $33, {{[0-9]+}}([[MUL]],[[ARG2]])
; CHECK: retl
;
; Function Attrs: nounwind
define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) {
entry:
%add = add nsw i32 %lll, 5
%arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
store i32 11, i32* %arrayidx1, align 4
%arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
store i32 22, i32* %arrayidx3, align 4
%add4 = add nsw i32 %lll, 25
%arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
store i32 33, i32* %arrayidx6, align 4
ret void
}
; Test for the same optimization on vector multiplies.
;
; Source looks something like this:
;
; typedef int v4int __attribute__((__vector_size__(16)));
;
; v4int x;
; v4int v2, v3;
; void testCombineMultiplies_splat(v4int v1) {
; v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
; v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
; x = (v1 + (v4int){ 11, 11, 11, 11 });
; }
;
; Output looks something like this:
;
; testCombineMultiplies_splat: # @testCombineMultiplies_splat
; # BB#0: # %entry
; movdqa .LCPI1_0, %xmm1 # xmm1 = [11,11,11,11]
; paddd %xmm0, %xmm1
; movdqa .LCPI1_1, %xmm2 # xmm2 = [22,22,22,22]
; pshufd $245, %xmm0, %xmm3 # xmm3 = xmm0[1,1,3,3]
; pmuludq %xmm2, %xmm0
; pshufd $232, %xmm0, %xmm0 # xmm0 = xmm0[0,2,2,3]
; pmuludq %xmm2, %xmm3
; pshufd $232, %xmm3, %xmm2 # xmm2 = xmm3[0,2,2,3]
; punpckldq %xmm2, %xmm0 # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; movdqa .LCPI1_2, %xmm2 # xmm2 = [242,242,242,242]
; paddd %xmm0, %xmm2
; paddd .LCPI1_3, %xmm0
; movdqa %xmm2, v2
; movdqa %xmm0, v3
; movdqa %xmm1, x
; retl
;
; Again, we want to make sure we don't generate two different multiplies.
; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
; pmuludq instructions), followed by two adds. Without this optimization, we'd
; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
;
; CHECK-LABEL: testCombineMultiplies_splat
; CHECK: movdqa .LCPI1_0, [[C11:%xmm[0-9]]]
; CHECK-NEXT: paddd %xmm0, [[C11]]
; CHECK-NEXT: movdqa .LCPI1_1, [[C22:%xmm[0-9]]]
; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
; CHECK-NEXT: pmuludq [[C22]], [[T4:%xmm[0-9]]]
; CHECK-NEXT: pshufd $232, [[T4]], [[T5:%xmm[0-9]]]
; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
; CHECK-NEXT: movdqa .LCPI1_2, [[C242:%xmm[0-9]]]
; CHECK-NEXT: paddd [[T6]], [[C242]]
; CHECK-NEXT: paddd .LCPI1_3, [[C726:%xmm[0-9]]]
; CHECK-NEXT: movdqa [[C242]], v2
; CHECK-NEXT: [[C726]], v3
; CHECK-NEXT: [[C11]], x
; CHECK-NEXT: retl
@v2 = common global <4 x i32> zeroinitializer, align 16
@v3 = common global <4 x i32> zeroinitializer, align 16
@x = common global <4 x i32> zeroinitializer, align 16
; Function Attrs: nounwind
define void @testCombineMultiplies_splat(<4 x i32> %v1) {
entry:
%add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
%mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
%add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
%mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
store <4 x i32> %mul1, <4 x i32>* @v2, align 16
store <4 x i32> %mul2, <4 x i32>* @v3, align 16
store <4 x i32> %add1, <4 x i32>* @x, align 16
ret void
}
; Finally, check the non-splatted vector case. This is very similar
; to the previous test case, except for the vector values.
;
; CHECK-LABEL: testCombineMultiplies_non_splat
; CHECK: movdqa .LCPI2_0, [[C11:%xmm[0-9]]]
; CHECK-NEXT: paddd %xmm0, [[C11]]
; CHECK-NEXT: movdqa .LCPI2_1, [[C22:%xmm[0-9]]]
; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
; CHECK-NEXT: pshufd $245, [[C22]], [[T7:%xmm[0-9]]]
; CHECK-NEXT: pmuludq [[T1]], [[T7]]
; CHECK-NEXT: pshufd $232, [[T7]], [[T5:%xmm[0-9]]]
; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
; CHECK-NEXT: movdqa .LCPI2_2, [[C242:%xmm[0-9]]]
; CHECK-NEXT: paddd [[T6]], [[C242]]
; CHECK-NEXT: paddd .LCPI2_3, [[C726:%xmm[0-9]]]
; CHECK-NEXT: movdqa [[C242]], v2
; CHECK-NEXT: [[C726]], v3
; CHECK-NEXT: [[C11]], x
; CHECK-NEXT: retl
; Function Attrs: nounwind
define void @testCombineMultiplies_non_splat(<4 x i32> %v1) {
entry:
%add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
%mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
%add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
%mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
store <4 x i32> %mul1, <4 x i32>* @v2, align 16
store <4 x i32> %mul2, <4 x i32>* @v3, align 16
store <4 x i32> %add1, <4 x i32>* @x, align 16
ret void
}