Use ComputeMaskedBits to determine # sign bits as a fallback. This allows us

to handle all kinds of stuff, including silly things like:
sextinreg(setcc,i16) -> setcc.

llvm-svn: 28155
This commit is contained in:
Chris Lattner 2006-05-06 23:48:13 +00:00
parent 8b8093dea2
commit 5c9c9f0eb6

View File

@ -1176,8 +1176,29 @@ unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
if (NumBits > 1) return NumBits;
}
// FIXME: Should use computemaskedbits to look at the top bits.
return 1;
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
uint64_t KnownZero, KnownOne;
uint64_t Mask = MVT::getIntVTBitMask(VT);
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
uint64_t SignBit = MVT::getIntVTSignBit(VT);
if (KnownZero & SignBit) { // SignBit is 0
Mask = KnownZero;
} else if (KnownOne & SignBit) { // SignBit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return 1;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask ^= ~0ULL;
Mask <<= 64-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::min(VTBits, CountLeadingZeros_64(Mask));
}