Fold trunc casts into add-recurrence expressions, allowing the

add-recurrence to be exposed. Add a new SCEV folding rule to
help simplify expressions in the presence of these extra truncs.

llvm-svn: 71264
This commit is contained in:
Dan Gohman 2009-05-08 21:03:19 +00:00
parent 6ad9e22d42
commit 603f022049
2 changed files with 86 additions and 8 deletions

View File

@ -748,13 +748,8 @@ SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
std::vector<SCEVHandle> Operands;
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
// FIXME: This should allow truncation of other expression types!
if (isa<SCEVConstant>(AddRec->getOperand(i)))
Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
else
break;
if (Operands.size() == AddRec->getNumOperands())
return getAddRecExpr(Operands, AddRec->getLoop());
Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
return getAddRecExpr(Operands, AddRec->getLoop());
}
SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
@ -966,7 +961,66 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
return getAddExpr(Ops);
}
// Now we know the first non-constant operand. Skip past any cast SCEVs.
// Check for truncates. If all the operands are truncated from the same
// type, see if factoring out the truncate would permit the result to be
// folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
// if the contents of the resulting outer trunc fold to something simple.
for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
const Type *DstType = Trunc->getType();
const Type *SrcType = Trunc->getOperand()->getType();
std::vector<SCEVHandle> LargeOps;
bool Ok = true;
// Check all the operands to see if they can be represented in the
// source type of the truncate.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
if (T->getOperand()->getType() != SrcType) {
Ok = false;
break;
}
LargeOps.push_back(T->getOperand());
} else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
// This could be either sign or zero extension, but sign extension
// is much more likely to be foldable here.
LargeOps.push_back(getSignExtendExpr(C, SrcType));
} else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
std::vector<SCEVHandle> LargeMulOps;
for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
if (const SCEVTruncateExpr *T =
dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
if (T->getOperand()->getType() != SrcType) {
Ok = false;
break;
}
LargeMulOps.push_back(T->getOperand());
} else if (const SCEVConstant *C =
dyn_cast<SCEVConstant>(M->getOperand(j))) {
// This could be either sign or zero extension, but sign extension
// is much more likely to be foldable here.
LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
} else {
Ok = false;
break;
}
}
if (Ok)
LargeOps.push_back(getMulExpr(LargeMulOps));
} else {
Ok = false;
break;
}
}
if (Ok) {
// Evaluate the expression in the larger type.
SCEVHandle Fold = getAddExpr(LargeOps);
// If it folds to something simple, use it. Otherwise, don't.
if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
return getTruncateExpr(Fold, DstType);
}
}
// Skip past any other cast SCEVs.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
++Idx;

View File

@ -0,0 +1,24 @@
; RUN: llvm-as < %s | opt -analyze -scalar-evolution -disable-output \
; RUN: | grep {sext.*trunc.*Exits: 11}
; ScalarEvolution should be able to compute a loop exit value for %indvar.i8.
define void @another_count_down_signed(double* %d, i64 %n) nounwind {
entry:
br label %loop
loop: ; preds = %loop, %entry
%indvar = phi i64 [ %n, %entry ], [ %indvar.next, %loop ] ; <i64> [#uses=4]
%s0 = shl i64 %indvar, 8 ; <i64> [#uses=1]
%indvar.i8 = ashr i64 %s0, 8 ; <i64> [#uses=1]
%t0 = getelementptr double* %d, i64 %indvar.i8 ; <double*> [#uses=2]
%t1 = load double* %t0 ; <double> [#uses=1]
%t2 = mul double %t1, 1.000000e-01 ; <double> [#uses=1]
store double %t2, double* %t0
%indvar.next = sub i64 %indvar, 1 ; <i64> [#uses=2]
%exitcond = icmp eq i64 %indvar.next, 10 ; <i1> [#uses=1]
br i1 %exitcond, label %return, label %loop
return: ; preds = %loop
ret void
}