mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-29 23:16:28 +00:00
Generalize the new code in instcombine's ComputeNumSignBits for handling
and/or to handle more cases (such as this add-sitofp.ll testcase), and port it to selectiondag's ComputeNumSignBits. llvm-svn: 51469
This commit is contained in:
parent
c7007dd0dc
commit
67e1a58e22
@ -1628,6 +1628,7 @@ unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
||||
assert(MVT::isInteger(VT) && "Invalid VT!");
|
||||
unsigned VTBits = MVT::getSizeInBits(VT);
|
||||
unsigned Tmp, Tmp2;
|
||||
unsigned FirstAnswer = 1;
|
||||
|
||||
if (Depth == 6)
|
||||
return 1; // Limit search depth.
|
||||
@ -1683,11 +1684,16 @@ unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
||||
case ISD::AND:
|
||||
case ISD::OR:
|
||||
case ISD::XOR: // NOT is handled here.
|
||||
// Logical binary ops preserve the number of sign bits.
|
||||
// Logical binary ops preserve the number of sign bits at the worst.
|
||||
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
||||
if (Tmp == 1) return 1; // Early out.
|
||||
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
||||
return std::min(Tmp, Tmp2);
|
||||
if (Tmp != 1) {
|
||||
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
||||
FirstAnswer = std::min(Tmp, Tmp2);
|
||||
// We computed what we know about the sign bits as our first
|
||||
// answer. Now proceed to the generic code that uses
|
||||
// ComputeMaskedBits, and pick whichever answer is better.
|
||||
}
|
||||
break;
|
||||
|
||||
case ISD::SELECT:
|
||||
Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
||||
@ -1801,7 +1807,7 @@ unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
||||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
||||
Op.getOpcode() == ISD::INTRINSIC_VOID) {
|
||||
unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
|
||||
if (NumBits > 1) return NumBits;
|
||||
if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
|
||||
}
|
||||
|
||||
// Finally, if we can prove that the top bits of the result are 0's or 1's,
|
||||
@ -1816,7 +1822,7 @@ unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
||||
Mask = KnownOne;
|
||||
} else {
|
||||
// Nothing known.
|
||||
return 1;
|
||||
return FirstAnswer;
|
||||
}
|
||||
|
||||
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
|
||||
@ -1825,7 +1831,7 @@ unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
||||
Mask <<= Mask.getBitWidth()-VTBits;
|
||||
// Return # leading zeros. We use 'min' here in case Val was zero before
|
||||
// shifting. We don't want to return '64' as for an i32 "0".
|
||||
return std::min(VTBits, Mask.countLeadingZeros());
|
||||
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
|
||||
}
|
||||
|
||||
|
||||
|
@ -2072,6 +2072,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
|
||||
const IntegerType *Ty = cast<IntegerType>(V->getType());
|
||||
unsigned TyBits = Ty->getBitWidth();
|
||||
unsigned Tmp, Tmp2;
|
||||
unsigned FirstAnswer = 1;
|
||||
|
||||
if (Depth == 6)
|
||||
return 1; // Limit search depth.
|
||||
@ -2101,54 +2102,18 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
|
||||
}
|
||||
break;
|
||||
case Instruction::And:
|
||||
// Logical binary ops preserve the number of sign bits at the worst.
|
||||
Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
|
||||
if (Tmp != 1) {
|
||||
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
|
||||
Tmp = std::min(Tmp, Tmp2);
|
||||
}
|
||||
|
||||
// X & C has sign bits equal to C if C's top bits are zeros.
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
|
||||
// See what bits are known to be zero on the output.
|
||||
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
|
||||
APInt Mask = APInt::getAllOnesValue(TyBits);
|
||||
ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
||||
|
||||
KnownZero |= ~C->getValue();
|
||||
// If we know that we have leading zeros, we know we have at least that
|
||||
// many sign bits.
|
||||
Tmp = std::max(Tmp, KnownZero.countLeadingOnes());
|
||||
}
|
||||
return Tmp;
|
||||
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor: // NOT is handled here.
|
||||
// Logical binary ops preserve the number of sign bits at the worst.
|
||||
Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
|
||||
if (Tmp != 1) {
|
||||
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
|
||||
Tmp = std::min(Tmp, Tmp2);
|
||||
FirstAnswer = std::min(Tmp, Tmp2);
|
||||
// We computed what we know about the sign bits as our first
|
||||
// answer. Now proceed to the generic code that uses
|
||||
// ComputeMaskedBits, and pick whichever answer is better.
|
||||
}
|
||||
// X & C has sign bits equal to C if C's top bits are zeros.
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
|
||||
// See what bits are known to be one on the output.
|
||||
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
|
||||
APInt Mask = APInt::getAllOnesValue(TyBits);
|
||||
ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
||||
|
||||
KnownOne |= C->getValue();
|
||||
// If we know that we have leading ones, we know we have at least that
|
||||
// many sign bits.
|
||||
Tmp = std::max(Tmp, KnownOne.countLeadingOnes());
|
||||
}
|
||||
return Tmp;
|
||||
|
||||
case Instruction::Xor: // NOT is handled here.
|
||||
// Logical binary ops preserve the number of sign bits.
|
||||
Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1);
|
||||
if (Tmp == 1) return 1; // Early out.
|
||||
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1);
|
||||
return std::min(Tmp, Tmp2);
|
||||
break;
|
||||
|
||||
case Instruction::Select:
|
||||
Tmp = ComputeNumSignBits(U->getOperand(1), Depth+1);
|
||||
@ -2232,7 +2197,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
|
||||
Mask = KnownOne;
|
||||
} else {
|
||||
// Nothing known.
|
||||
return 1;
|
||||
return FirstAnswer;
|
||||
}
|
||||
|
||||
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
|
||||
@ -2241,7 +2206,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{
|
||||
Mask <<= Mask.getBitWidth()-TyBits;
|
||||
// Return # leading zeros. We use 'min' here in case Val was zero before
|
||||
// shifting. We don't want to return '64' as for an i32 "0".
|
||||
return std::min(TyBits, Mask.countLeadingZeros());
|
||||
return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
|
||||
}
|
||||
|
||||
|
||||
|
9
test/Transforms/InstCombine/add-sitofp.ll
Normal file
9
test/Transforms/InstCombine/add-sitofp.ll
Normal file
@ -0,0 +1,9 @@
|
||||
; RUN: llvm-as < %s | opt -instcombine | llvm-dis | grep {add i32}
|
||||
|
||||
define double @x(i32 %a, i32 %b) nounwind {
|
||||
%m = lshr i32 %a, 24
|
||||
%n = and i32 %m, %b
|
||||
%o = sitofp i32 %n to double
|
||||
%p = add double %o, 1.0
|
||||
ret double %p
|
||||
}
|
Loading…
Reference in New Issue
Block a user