Doxgenate comments.

Add GreatestCommonDivisor64

llvm-svn: 32661
This commit is contained in:
Chris Lattner 2006-12-19 01:11:32 +00:00
parent f810a0cfab
commit 6a34f2718f

View File

@ -15,7 +15,6 @@
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/Support/DataTypes.h"
#include "llvm/System/IncludeFile.h"
namespace llvm {
@ -23,28 +22,27 @@ namespace llvm {
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
// Hi_32 - This function returns the high 32 bits of a 64 bit value.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline unsigned Hi_32(uint64_t Value) {
return static_cast<unsigned>(Value >> 32);
}
// Lo_32 - This function returns the low 32 bits of a 64 bit value.
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline unsigned Lo_32(uint64_t Value) {
return static_cast<unsigned>(Value);
}
// is?Type - these functions produce optimal testing for integer data types.
inline bool isInt8 (int64_t Value) {
/// is?Type - these functions produce optimal testing for integer data types.
inline bool isInt8 (int64_t Value) {
return static_cast<signed char>(Value) == Value;
}
inline bool isUInt8 (int64_t Value) {
inline bool isUInt8 (int64_t Value) {
return static_cast<unsigned char>(Value) == Value;
}
inline bool isInt16 (int64_t Value) {
inline bool isInt16 (int64_t Value) {
return static_cast<signed short>(Value) == Value;
}
inline bool isUInt16(int64_t Value) {
inline bool isUInt16(int64_t Value) {
return static_cast<unsigned short>(Value) == Value;
}
inline bool isInt32 (int64_t Value) {
@ -54,54 +52,55 @@ inline bool isUInt32(int64_t Value) {
return static_cast<unsigned int>(Value) == Value;
}
// isMask_32 - This function returns true if the argument is a sequence of ones
// starting at the least significant bit with the remainder zero (32 bit version.)
// Ex. isMask_32(0x0000FFFFU) == true.
/// isMask_32 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (32 bit
/// version). Ex. isMask_32(0x0000FFFFU) == true.
inline const bool isMask_32(unsigned Value) {
return Value && ((Value + 1) & Value) == 0;
}
// isMask_64 - This function returns true if the argument is a sequence of ones
// starting at the least significant bit with the remainder zero (64 bit version.)
/// isMask_64 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (64 bit
/// version).
inline const bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
// isShiftedMask_32 - This function returns true if the argument contains a
// sequence of ones with the remainder zero (32 bit version.)
// Ex. isShiftedMask_32(0x0000FF00U) == true.
/// isShiftedMask_32 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline const bool isShiftedMask_32(unsigned Value) {
return isMask_32((Value - 1) | Value);
}
// isShiftedMask_64 - This function returns true if the argument contains a
// sequence of ones with the remainder zero (64 bit version.)
/// isShiftedMask_64 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (64 bit version.)
inline const bool isShiftedMask_64(uint64_t Value) {
return isMask_64((Value - 1) | Value);
}
// isPowerOf2_32 - This function returns true if the argument is a power of
// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(unsigned Value) {
return Value && !(Value & (Value - 1));
}
// isPowerOf2_64 - This function returns true if the argument is a power of two
// > 0 (64 bit edition.)
/// isPowerOf2_64 - This function returns true if the argument is a power of two
/// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - int64_t(1L)));
}
// ByteSwap_16 - This function returns a byte-swapped representation of the
// 16-bit argument, Value.
/// ByteSwap_16 - This function returns a byte-swapped representation of the
/// 16-bit argument, Value.
inline unsigned short ByteSwap_16(unsigned short Value) {
unsigned short Hi = Value << 8;
unsigned short Lo = Value >> 8;
return Hi | Lo;
}
// ByteSwap_32 - This function returns a byte-swapped representation of the
// 32-bit argument, Value.
/// ByteSwap_32 - This function returns a byte-swapped representation of the
/// 32-bit argument, Value.
inline unsigned ByteSwap_32(unsigned Value) {
unsigned Byte0 = Value & 0x000000FF;
unsigned Byte1 = Value & 0x0000FF00;
@ -110,18 +109,18 @@ inline unsigned ByteSwap_32(unsigned Value) {
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
}
// ByteSwap_64 - This function returns a byte-swapped representation of the
// 64-bit argument, Value.
/// ByteSwap_64 - This function returns a byte-swapped representation of the
/// 64-bit argument, Value.
inline uint64_t ByteSwap_64(uint64_t Value) {
uint64_t Hi = ByteSwap_32(unsigned(Value));
uint64_t Lo = ByteSwap_32(unsigned(Value >> 32));
return (Hi << 32) | Lo;
}
// CountLeadingZeros_32 - this function performs the platform optimal form of
// counting the number of zeros from the most significant bit to the first one
// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
// Returns 32 if the word is zero.
/// CountLeadingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the most significant bit to the first one
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountLeadingZeros_32(unsigned Value) {
unsigned Count; // result
#if __GNUC__ >= 4
@ -146,10 +145,10 @@ inline unsigned CountLeadingZeros_32(unsigned Value) {
return Count;
}
// CountLeadingZeros_64 - This function performs the platform optimal form
// of counting the number of zeros from the most significant bit to the first
// one bit (64 bit edition.)
// Returns 64 if the word is zero.
/// CountLeadingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the most significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountLeadingZeros_64(uint64_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
@ -190,25 +189,25 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
return Count;
}
// CountTrailingZeros_32 - this function performs the platform optimal form of
// counting the number of zeros from the least significant bit to the first one
// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
// Returns 32 if the word is zero.
/// CountTrailingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountTrailingZeros_32(unsigned Value) {
return 32 - CountLeadingZeros_32(~Value & (Value - 1));
}
// CountTrailingZeros_64 - This function performs the platform optimal form
// of counting the number of zeros from the least significant bit to the first
// one bit (64 bit edition.)
// Returns 64 if the word is zero.
/// CountTrailingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the least significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountTrailingZeros_64(uint64_t Value) {
return 64 - CountLeadingZeros_64(~Value & (Value - 1));
}
// CountPopulation_32 - this function counts the number of set bits in a value.
// Ex. CountPopulation(0xF000F000) = 8
// Returns 0 if the word is zero.
/// CountPopulation_32 - this function counts the number of set bits in a value.
/// Ex. CountPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
inline unsigned CountPopulation_32(unsigned Value) {
unsigned x, t;
x = Value - ((Value >> 1) & 0x55555555);
@ -220,41 +219,52 @@ inline unsigned CountPopulation_32(unsigned Value) {
return x >> 24;
}
// CountPopulation_64 - this function counts the number of set bits in a value,
// (64 bit edition.)
/// CountPopulation_64 - this function counts the number of set bits in a value,
/// (64 bit edition.)
inline unsigned CountPopulation_64(uint64_t Value) {
return CountPopulation_32(unsigned(Value >> 32)) +
CountPopulation_32(unsigned(Value));
}
// Log2_32 - This function returns the floor log base 2 of the specified value,
// -1 if the value is zero. (32 bit edition.)
// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(unsigned Value) {
return 31 - CountLeadingZeros_32(Value);
}
// Log2_64 - This function returns the floor log base 2 of the specified value,
// -1 if the value is zero. (64 bit edition.)
/// Log2_64 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return 63 - CountLeadingZeros_64(Value);
}
// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
// value, 32 if the value is zero. (32 bit edition).
// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(unsigned Value) {
return 32-CountLeadingZeros_32(Value-1);
}
// Log2_64 - This function returns the ceil log base 2 of the specified value,
// 64 if the value is zero. (64 bit edition.)
/// Log2_64 - This function returns the ceil log base 2 of the specified value,
/// 64 if the value is zero. (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) {
return 64-CountLeadingZeros_64(Value-1);
}
// BitsToDouble - This function takes a 64-bit integer and returns the bit
// equivalent double.
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
/// values using Euclid's algorithm.
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
while (B) {
uint64_t T = B;
B = A % B;
A = T;
}
return A;
}
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
/// equivalent double.
inline double BitsToDouble(uint64_t Bits) {
union {
uint64_t L;
@ -264,8 +274,8 @@ inline double BitsToDouble(uint64_t Bits) {
return T.D;
}
// BitsToFloat - This function takes a 32-bit integer and returns the bit
// equivalent float.
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
/// equivalent float.
inline float BitsToFloat(uint32_t Bits) {
union {
uint32_t I;
@ -275,8 +285,8 @@ inline float BitsToFloat(uint32_t Bits) {
return T.F;
}
// DoubleToBits - This function takes a double and returns the bit
// equivalent 64-bit integer.
/// DoubleToBits - This function takes a double and returns the bit
/// equivalent 64-bit integer.
inline uint64_t DoubleToBits(double Double) {
union {
uint64_t L;
@ -286,8 +296,8 @@ inline uint64_t DoubleToBits(double Double) {
return T.L;
}
// FloatToBits - This function takes a float and returns the bit
// equivalent 32-bit integer.
/// FloatToBits - This function takes a float and returns the bit
/// equivalent 32-bit integer.
inline uint32_t FloatToBits(float Float) {
union {
uint32_t I;
@ -297,13 +307,13 @@ inline uint32_t FloatToBits(float Float) {
return T.I;
}
// Platform-independent wrappers for the C99 isnan() function.
int IsNAN (float f);
int IsNAN (double d);
/// Platform-independent wrappers for the C99 isnan() function.
int IsNAN(float f);
int IsNAN(double d);
// Platform-independent wrappers for the C99 isinf() function.
int IsInf (float f);
int IsInf (double d);
/// Platform-independent wrappers for the C99 isinf() function.
int IsInf(float f);
int IsInf(double d);
} // End llvm namespace