Move some code around.

Make the "fold (and (cast A), (cast B)) -> (cast (and A, B))" transformation
only apply when both casts really will cause code to be generated.  If one or
both doesn't, then this xform doesn't remove a cast.

This fixes Transforms/InstCombine/2006-05-06-Infloop.ll

llvm-svn: 28141
This commit is contained in:
Chris Lattner 2006-05-06 09:00:16 +00:00
parent d689dd7659
commit 7661770087

View File

@ -304,6 +304,137 @@ static Value *isCast(Value *V) {
return 0;
}
enum CastType {
Noop = 0,
Truncate = 1,
Signext = 2,
Zeroext = 3
};
/// getCastType - In the future, we will split the cast instruction into these
/// various types. Until then, we have to do the analysis here.
static CastType getCastType(const Type *Src, const Type *Dest) {
assert(Src->isIntegral() && Dest->isIntegral() &&
"Only works on integral types!");
unsigned SrcSize = Src->getPrimitiveSizeInBits();
unsigned DestSize = Dest->getPrimitiveSizeInBits();
if (SrcSize == DestSize) return Noop;
if (SrcSize > DestSize) return Truncate;
if (Src->isSigned()) return Signext;
return Zeroext;
}
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
const Type *DstTy, TargetData *TD) {
// It is legal to eliminate the instruction if casting A->B->A if the sizes
// are identical and the bits don't get reinterpreted (for example
// int->float->int would not be allowed).
if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
return true;
// If we are casting between pointer and integer types, treat pointers as
// integers of the appropriate size for the code below.
if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
// Allow free casting and conversion of sizes as long as the sign doesn't
// change...
if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
CastType FirstCast = getCastType(SrcTy, MidTy);
CastType SecondCast = getCastType(MidTy, DstTy);
// Capture the effect of these two casts. If the result is a legal cast,
// the CastType is stored here, otherwise a special code is used.
static const unsigned CastResult[] = {
// First cast is noop
0, 1, 2, 3,
// First cast is a truncate
1, 1, 4, 4, // trunc->extend is not safe to eliminate
// First cast is a sign ext
2, 5, 2, 4, // signext->zeroext never ok
// First cast is a zero ext
3, 5, 3, 3,
};
unsigned Result = CastResult[FirstCast*4+SecondCast];
switch (Result) {
default: assert(0 && "Illegal table value!");
case 0:
case 1:
case 2:
case 3:
// FIXME: in the future, when LLVM has explicit sign/zeroextends and
// truncates, we could eliminate more casts.
return (unsigned)getCastType(SrcTy, DstTy) == Result;
case 4:
return false; // Not possible to eliminate this here.
case 5:
// Sign or zero extend followed by truncate is always ok if the result
// is a truncate or noop.
CastType ResultCast = getCastType(SrcTy, DstTy);
if (ResultCast == Noop || ResultCast == Truncate)
return true;
// Otherwise we are still growing the value, we are only safe if the
// result will match the sign/zeroextendness of the result.
return ResultCast == FirstCast;
}
}
// If this is a cast from 'float -> double -> integer', cast from
// 'float -> integer' directly, as the value isn't changed by the
// float->double conversion.
if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
DstTy->isIntegral() &&
SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
return true;
// Packed type conversions don't modify bits.
if (isa<PackedType>(SrcTy) && isa<PackedType>(MidTy) &&isa<PackedType>(DstTy))
return true;
return false;
}
/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
/// in any code being generated. It does not require codegen if V is simple
/// enough or if the cast can be folded into other casts.
static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
if (V->getType() == Ty || isa<Constant>(V)) return false;
// If this is a noop cast, it isn't real codegen.
if (V->getType()->isLosslesslyConvertibleTo(Ty))
return false;
// If this is another cast that can be elimianted, it isn't codegen either.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
TD))
return false;
return true;
}
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction. This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
Instruction *InsertBefore) {
if (V->getType() == DestTy) return V;
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(C, DestTy);
CastInst *CI = new CastInst(V, DestTy, V->getName());
InsertNewInstBefore(CI, *InsertBefore);
return CI;
}
// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
@ -2645,7 +2776,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
const Type *SrcTy = Op0C->getOperand(0)->getType();
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
!SrcTy->isLosslesslyConvertibleTo(Op0C->getType())) {
// Only do this if the casts both really cause code to be generated.
ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
Op1C->getOperand(0),
I.getName());
@ -2885,7 +3018,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
const Type *SrcTy = Op0C->getOperand(0)->getType();
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
!SrcTy->isLosslesslyConvertibleTo(Op0C->getType())) {
// Only do this if the casts both really cause code to be generated.
ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
Op1C->getOperand(0),
I.getName());
@ -3064,7 +3199,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
const Type *SrcTy = Op0C->getOperand(0)->getType();
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegral() &&
!SrcTy->isLosslesslyConvertibleTo(Op0C->getType())) {
// Only do this if the casts both really cause code to be generated.
ValueRequiresCast(Op0C->getOperand(0), I.getType(), TD) &&
ValueRequiresCast(Op1C->getOperand(0), I.getType(), TD)) {
Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
Op1C->getOperand(0),
I.getName());
@ -4500,127 +4637,6 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
return 0;
}
enum CastType {
Noop = 0,
Truncate = 1,
Signext = 2,
Zeroext = 3
};
/// getCastType - In the future, we will split the cast instruction into these
/// various types. Until then, we have to do the analysis here.
static CastType getCastType(const Type *Src, const Type *Dest) {
assert(Src->isIntegral() && Dest->isIntegral() &&
"Only works on integral types!");
unsigned SrcSize = Src->getPrimitiveSizeInBits();
unsigned DestSize = Dest->getPrimitiveSizeInBits();
if (SrcSize == DestSize) return Noop;
if (SrcSize > DestSize) return Truncate;
if (Src->isSigned()) return Signext;
return Zeroext;
}
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
const Type *DstTy, TargetData *TD) {
// It is legal to eliminate the instruction if casting A->B->A if the sizes
// are identical and the bits don't get reinterpreted (for example
// int->float->int would not be allowed).
if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
return true;
// If we are casting between pointer and integer types, treat pointers as
// integers of the appropriate size for the code below.
if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
// Allow free casting and conversion of sizes as long as the sign doesn't
// change...
if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
CastType FirstCast = getCastType(SrcTy, MidTy);
CastType SecondCast = getCastType(MidTy, DstTy);
// Capture the effect of these two casts. If the result is a legal cast,
// the CastType is stored here, otherwise a special code is used.
static const unsigned CastResult[] = {
// First cast is noop
0, 1, 2, 3,
// First cast is a truncate
1, 1, 4, 4, // trunc->extend is not safe to eliminate
// First cast is a sign ext
2, 5, 2, 4, // signext->zeroext never ok
// First cast is a zero ext
3, 5, 3, 3,
};
unsigned Result = CastResult[FirstCast*4+SecondCast];
switch (Result) {
default: assert(0 && "Illegal table value!");
case 0:
case 1:
case 2:
case 3:
// FIXME: in the future, when LLVM has explicit sign/zeroextends and
// truncates, we could eliminate more casts.
return (unsigned)getCastType(SrcTy, DstTy) == Result;
case 4:
return false; // Not possible to eliminate this here.
case 5:
// Sign or zero extend followed by truncate is always ok if the result
// is a truncate or noop.
CastType ResultCast = getCastType(SrcTy, DstTy);
if (ResultCast == Noop || ResultCast == Truncate)
return true;
// Otherwise we are still growing the value, we are only safe if the
// result will match the sign/zeroextendness of the result.
return ResultCast == FirstCast;
}
}
// If this is a cast from 'float -> double -> integer', cast from
// 'float -> integer' directly, as the value isn't changed by the
// float->double conversion.
if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
DstTy->isIntegral() &&
SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
return true;
// Packed type conversions don't modify bits.
if (isa<PackedType>(SrcTy) && isa<PackedType>(MidTy) &&isa<PackedType>(DstTy))
return true;
return false;
}
static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
if (V->getType() == Ty || isa<Constant>(V)) return false;
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
TD))
return false;
return true;
}
/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction. This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
Instruction *InsertBefore) {
if (V->getType() == DestTy) return V;
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(C, DestTy);
CastInst *CI = new CastInst(V, DestTy, V->getName());
InsertNewInstBefore(CI, *InsertBefore);
return CI;
}
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
/// expression. If so, decompose it, returning some value X, such that Val is