X86 Peephole: fold loads to the source register operand if possible.

Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.

This patch is a rework of r160919 and was tested on clang self-host on my local
machine.

rdar://10554090 and rdar://11873276

llvm-svn: 161152
This commit is contained in:
Manman Ren 2012-08-02 00:56:42 +00:00
parent 5848ce22b0
commit 78b8d454cc
10 changed files with 212 additions and 54 deletions

View File

@ -14,6 +14,7 @@
#ifndef LLVM_TARGET_TARGETINSTRINFO_H #ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCInstrInfo.h"
#include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunction.h"
@ -693,6 +694,16 @@ public:
return false; return false;
} }
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if and only if the
/// def and use are in the same BB.
virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
return 0;
}
/// FoldImmediate - 'Reg' is known to be defined by a move immediate /// FoldImmediate - 'Reg' is known to be defined by a move immediate
/// instruction, try to fold the immediate into the use instruction. /// instruction, try to fold the immediate into the use instruction.
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,

View File

@ -78,6 +78,7 @@ STATISTIC(NumReuse, "Number of extension results reused");
STATISTIC(NumBitcasts, "Number of bitcasts eliminated"); STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
STATISTIC(NumCmps, "Number of compares eliminated"); STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate folded"); STATISTIC(NumImmFold, "Number of move immediate folded");
STATISTIC(NumLoadFold, "Number of loads folded");
namespace { namespace {
class PeepholeOptimizer : public MachineFunctionPass { class PeepholeOptimizer : public MachineFunctionPass {
@ -114,6 +115,7 @@ namespace {
bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
SmallSet<unsigned, 4> &ImmDefRegs, SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs); DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
bool isLoadFoldable(MachineInstr *MI, unsigned &FoldAsLoadDefReg);
}; };
} }
@ -384,6 +386,29 @@ bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
return false; return false;
} }
/// isLoadFoldable - Check whether MI is a candidate for folding into a later
/// instruction. We only fold loads to virtual registers and the virtual
/// register defined has a single use.
bool PeepholeOptimizer::isLoadFoldable(MachineInstr *MI,
unsigned &FoldAsLoadDefReg) {
if (MI->canFoldAsLoad()) {
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.getNumDefs() == 1) {
unsigned Reg = MI->getOperand(0).getReg();
// To reduce compilation time, we check MRI->hasOneUse when inserting
// loads. It should be checked when processing uses of the load, since
// uses can be removed during peephole.
if (!MI->getOperand(0).getSubReg() &&
TargetRegisterInfo::isVirtualRegister(Reg) &&
MRI->hasOneUse(Reg)) {
FoldAsLoadDefReg = Reg;
return true;
}
}
}
return false;
}
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs, SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
@ -441,6 +466,7 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
SmallPtrSet<MachineInstr*, 8> LocalMIs; SmallPtrSet<MachineInstr*, 8> LocalMIs;
SmallSet<unsigned, 4> ImmDefRegs; SmallSet<unsigned, 4> ImmDefRegs;
DenseMap<unsigned, MachineInstr*> ImmDefMIs; DenseMap<unsigned, MachineInstr*> ImmDefMIs;
unsigned FoldAsLoadDefReg;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I; MachineBasicBlock *MBB = &*I;
@ -448,6 +474,7 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
LocalMIs.clear(); LocalMIs.clear();
ImmDefRegs.clear(); ImmDefRegs.clear();
ImmDefMIs.clear(); ImmDefMIs.clear();
FoldAsLoadDefReg = 0;
bool First = true; bool First = true;
MachineBasicBlock::iterator PMII; MachineBasicBlock::iterator PMII;
@ -456,12 +483,17 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
MachineInstr *MI = &*MII; MachineInstr *MI = &*MII;
LocalMIs.insert(MI); LocalMIs.insert(MI);
// If there exists an instruction which belongs to the following
// categories, we will discard the load candidate.
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() || MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
MI->hasUnmodeledSideEffects()) { MI->hasUnmodeledSideEffects()) {
FoldAsLoadDefReg = 0;
++MII; ++MII;
continue; continue;
} }
if (MI->mayStore() || MI->isCall())
FoldAsLoadDefReg = 0;
if (MI->isBitcast()) { if (MI->isBitcast()) {
if (optimizeBitcastInstr(MI, MBB)) { if (optimizeBitcastInstr(MI, MBB)) {
@ -489,6 +521,31 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
} }
// Check whether MI is a load candidate for folding into a later
// instruction. If MI is not a candidate, check whether we can fold an
// earlier load into MI.
if (!isLoadFoldable(MI, FoldAsLoadDefReg) && FoldAsLoadDefReg) {
// We need to fold load after optimizeCmpInstr, since optimizeCmpInstr
// can enable folding by converting SUB to CMP.
MachineInstr *DefMI = 0;
MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
FoldAsLoadDefReg, DefMI);
if (FoldMI) {
// Update LocalMIs since we replaced MI with FoldMI and deleted DefMI.
LocalMIs.erase(MI);
LocalMIs.erase(DefMI);
LocalMIs.insert(FoldMI);
MI->eraseFromParent();
DefMI->eraseFromParent();
++NumLoadFold;
// MI is replaced with FoldMI.
Changed = true;
PMII = FoldMI;
MII = llvm::next(PMII);
continue;
}
}
First = false; First = false;
PMII = MII; PMII = MII;
++MII; ++MII;

View File

@ -3323,6 +3323,81 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
return true; return true;
} }
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if load defines a virtual
/// register, the virtual register is used once in the same BB, and the
/// instructions in-between do not load or store, and have no side effects.
MachineInstr* X86InstrInfo::
optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
if (FoldAsLoadDefReg == 0)
return 0;
// To be conservative, if there exists another load, clear the load candidate.
if (MI->mayLoad()) {
FoldAsLoadDefReg = 0;
return 0;
}
// Check whether we can move DefMI here.
DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
assert(DefMI);
bool SawStore = false;
if (!DefMI->isSafeToMove(this, 0, SawStore))
return 0;
// We try to commute MI if possible.
unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
// Collect information about virtual register operands of MI.
unsigned SrcOperandId = 0;
bool FoundSrcOperand = false;
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg != FoldAsLoadDefReg)
continue;
// Do not fold if we have a subreg use or a def or multiple uses.
if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
return 0;
SrcOperandId = i;
FoundSrcOperand = true;
}
if (!FoundSrcOperand) return 0;
// Check whether we can fold the def into SrcOperandId.
SmallVector<unsigned, 8> Ops;
Ops.push_back(SrcOperandId);
MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
if (FoldMI) {
FoldAsLoadDefReg = 0;
return FoldMI;
}
if (Idx == 1) {
// MI was changed but it didn't help, commute it back!
commuteInstruction(MI, false);
return 0;
}
// Check whether we can commute MI and enable folding.
if (MI->isCommutable()) {
MachineInstr *NewMI = commuteInstruction(MI, false);
// Unable to commute.
if (!NewMI) return 0;
if (NewMI != MI) {
// New instruction. It doesn't need to be kept.
NewMI->eraseFromParent();
return 0;
}
}
}
return 0;
}
/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined. This is /// instruction with two undef reads of the register being defined. This is
/// used for mapping: /// used for mapping:

View File

@ -387,6 +387,14 @@ public:
unsigned SrcReg2, int CmpMask, int CmpValue, unsigned SrcReg2, int CmpMask, int CmpValue,
const MachineRegisterInfo *MRI) const; const MachineRegisterInfo *MRI) const;
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if and only if the
/// def and use are in the same BB.
virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const;
private: private:
MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
MachineFunction::iterator &MFI, MachineFunction::iterator &MFI,

View File

@ -3,8 +3,7 @@
define void @double_save(<4 x i32>* %Ap, <4 x i32>* %Bp, <8 x i32>* %P) nounwind ssp { define void @double_save(<4 x i32>* %Ap, <4 x i32>* %Bp, <8 x i32>* %P) nounwind ssp {
entry: entry:
; CHECK: vmovaps ; CHECK: vmovaps
; CHECK: vmovaps ; CHECK: vinsertf128 $1, ([[A0:%rdi|%rsi]]),
; CHECK: vinsertf128
; CHECK: vmovups ; CHECK: vmovups
%A = load <4 x i32>* %Ap %A = load <4 x i32>* %Ap
%B = load <4 x i32>* %Bp %B = load <4 x i32>* %Bp

View File

@ -34,8 +34,7 @@ entry:
define double @squirt(double* %x) nounwind { define double @squirt(double* %x) nounwind {
entry: entry:
; CHECK: squirt: ; CHECK: squirt:
; CHECK: movsd ([[A0]]), %xmm0 ; CHECK: sqrtsd ([[A0]]), %xmm0
; CHECK: sqrtsd %xmm0, %xmm0
%z = load double* %x %z = load double* %x
%t = call double @llvm.sqrt.f64(double %z) %t = call double @llvm.sqrt.f64(double %z)
ret double %t ret double %t

View File

@ -45,3 +45,29 @@ L:
} }
; rdar://10554090
; xor in exit block will be CSE'ed and load will be folded to xor in entry.
define i1 @test3(i32* %P, i32* %Q) nounwind {
; CHECK: test3:
; CHECK: movl 8(%esp), %eax
; CHECK: xorl (%eax),
; CHECK: j
; CHECK-NOT: xor
entry:
%0 = load i32* %P, align 4
%1 = load i32* %Q, align 4
%2 = xor i32 %0, %1
%3 = and i32 %2, 65535
%4 = icmp eq i32 %3, 0
br i1 %4, label %exit, label %land.end
exit:
%shr.i.i19 = xor i32 %1, %0
%5 = and i32 %shr.i.i19, 2147418112
%6 = icmp eq i32 %5, 0
br label %land.end
land.end:
%7 = phi i1 [ %6, %exit ], [ false, %entry ]
ret i1 %7
}

View File

@ -1,11 +1,14 @@
; RUN: llc < %s -march=x86 -mattr=+sse2 > %t ; RUN: llc < %s -march=x86 -mattr=+sse2 | FileCheck %s
; RUN: grep pcmpeqd %t | count 1
; RUN: grep xor %t | count 1
; RUN: not grep LCP %t
define <2 x double> @foo() nounwind { define <2 x double> @foo() nounwind {
ret <2 x double> bitcast (<2 x i64><i64 -1, i64 -1> to <2 x double>) ret <2 x double> bitcast (<2 x i64><i64 -1, i64 -1> to <2 x double>)
; CHECK: foo:
; CHECK: pcmpeqd %xmm{{[0-9]+}}, %xmm{{[0-9]+}}
; CHECK-NEXT: ret
} }
define <2 x double> @bar() nounwind { define <2 x double> @bar() nounwind {
ret <2 x double> bitcast (<2 x i64><i64 0, i64 0> to <2 x double>) ret <2 x double> bitcast (<2 x i64><i64 0, i64 0> to <2 x double>)
; CHECK: bar:
; CHECK: xorps %xmm{{[0-9]+}}, %xmm{{[0-9]+}}
; CHECK-NEXT: ret
} }

View File

@ -1,6 +1,6 @@
; RUN: llc < %s -march=x86-64 -mcpu=nehalem -asm-verbose=false | FileCheck %s ; RUN: llc < %s -march=x86-64 -mtriple=x86_64-apple-darwin -mcpu=nehalem -asm-verbose=false | FileCheck %s
; RUN: llc < %s -march=x86-64 -mcpu=nehalem -asm-verbose=false -enable-unsafe-fp-math -enable-no-nans-fp-math | FileCheck -check-prefix=UNSAFE %s ; RUN: llc < %s -march=x86-64 -mtriple=x86_64-apple-darwin -mcpu=nehalem -asm-verbose=false -enable-unsafe-fp-math -enable-no-nans-fp-math | FileCheck -check-prefix=UNSAFE %s
; RUN: llc < %s -march=x86-64 -mcpu=nehalem -asm-verbose=false -enable-no-nans-fp-math | FileCheck -check-prefix=FINITE %s ; RUN: llc < %s -march=x86-64 -mtriple=x86_64-apple-darwin -mcpu=nehalem -asm-verbose=false -enable-no-nans-fp-math | FileCheck -check-prefix=FINITE %s
; Some of these patterns can be matched as SSE min or max. Some of ; Some of these patterns can be matched as SSE min or max. Some of
; then can be matched provided that the operands are swapped. ; then can be matched provided that the operands are swapped.
@ -137,16 +137,13 @@ define double @ole_inverse(double %x, double %y) nounwind {
} }
; CHECK: ogt_x: ; CHECK: ogt_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; CHECK-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: maxsd %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: ogt_x: ; UNSAFE: ogt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: ogt_x: ; FINITE: ogt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @ogt_x(double %x) nounwind { define double @ogt_x(double %x) nounwind {
%c = fcmp ogt double %x, 0.000000e+00 %c = fcmp ogt double %x, 0.000000e+00
@ -155,16 +152,13 @@ define double @ogt_x(double %x) nounwind {
} }
; CHECK: olt_x: ; CHECK: olt_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; CHECK-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: minsd %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: olt_x: ; UNSAFE: olt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: olt_x: ; FINITE: olt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @olt_x(double %x) nounwind { define double @olt_x(double %x) nounwind {
%c = fcmp olt double %x, 0.000000e+00 %c = fcmp olt double %x, 0.000000e+00
@ -217,12 +211,10 @@ define double @olt_inverse_x(double %x) nounwind {
; CHECK: oge_x: ; CHECK: oge_x:
; CHECK: ucomisd %xmm1, %xmm0 ; CHECK: ucomisd %xmm1, %xmm0
; UNSAFE: oge_x: ; UNSAFE: oge_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: oge_x: ; FINITE: oge_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @oge_x(double %x) nounwind { define double @oge_x(double %x) nounwind {
%c = fcmp oge double %x, 0.000000e+00 %c = fcmp oge double %x, 0.000000e+00
@ -233,12 +225,10 @@ define double @oge_x(double %x) nounwind {
; CHECK: ole_x: ; CHECK: ole_x:
; CHECK: ucomisd %xmm0, %xmm1 ; CHECK: ucomisd %xmm0, %xmm1
; UNSAFE: ole_x: ; UNSAFE: ole_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: ole_x: ; FINITE: ole_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @ole_x(double %x) nounwind { define double @ole_x(double %x) nounwind {
%c = fcmp ole double %x, 0.000000e+00 %c = fcmp ole double %x, 0.000000e+00
@ -411,12 +401,10 @@ define double @ule_inverse(double %x, double %y) nounwind {
; CHECK: ugt_x: ; CHECK: ugt_x:
; CHECK: ucomisd %xmm0, %xmm1 ; CHECK: ucomisd %xmm0, %xmm1
; UNSAFE: ugt_x: ; UNSAFE: ugt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: ugt_x: ; FINITE: ugt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @ugt_x(double %x) nounwind { define double @ugt_x(double %x) nounwind {
%c = fcmp ugt double %x, 0.000000e+00 %c = fcmp ugt double %x, 0.000000e+00
@ -427,12 +415,10 @@ define double @ugt_x(double %x) nounwind {
; CHECK: ult_x: ; CHECK: ult_x:
; CHECK: ucomisd %xmm1, %xmm0 ; CHECK: ucomisd %xmm1, %xmm0
; UNSAFE: ult_x: ; UNSAFE: ult_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: ult_x: ; FINITE: ult_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @ult_x(double %x) nounwind { define double @ult_x(double %x) nounwind {
%c = fcmp ult double %x, 0.000000e+00 %c = fcmp ult double %x, 0.000000e+00
@ -482,12 +468,10 @@ define double @ult_inverse_x(double %x) nounwind {
; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0 ; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: uge_x: ; UNSAFE: uge_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: uge_x: ; FINITE: uge_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @uge_x(double %x) nounwind { define double @uge_x(double %x) nounwind {
%c = fcmp uge double %x, 0.000000e+00 %c = fcmp uge double %x, 0.000000e+00
@ -501,12 +485,10 @@ define double @uge_x(double %x) nounwind {
; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0 ; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: ule_x: ; UNSAFE: ule_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: ret ; UNSAFE-NEXT: ret
; FINITE: ule_x: ; FINITE: ule_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: ret ; FINITE-NEXT: ret
define double @ule_x(double %x) nounwind { define double @ule_x(double %x) nounwind {
%c = fcmp ule double %x, 0.000000e+00 %c = fcmp ule double %x, 0.000000e+00
@ -515,8 +497,7 @@ define double @ule_x(double %x) nounwind {
} }
; CHECK: uge_inverse_x: ; CHECK: uge_inverse_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; CHECK-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: minsd %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: uge_inverse_x: ; UNSAFE: uge_inverse_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
@ -535,8 +516,7 @@ define double @uge_inverse_x(double %x) nounwind {
} }
; CHECK: ule_inverse_x: ; CHECK: ule_inverse_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; CHECK-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: maxsd %xmm1, %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
; UNSAFE: ule_inverse_x: ; UNSAFE: ule_inverse_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1 ; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1

View File

@ -1,4 +1,4 @@
; RUN: llc < %s -march=x86 -mcpu=yonah | FileCheck %s ; RUN: llc < %s -march=x86 -mcpu=yonah -mtriple=i386-apple-darwin | FileCheck %s
define <4 x i32> @test1(<4 x i32> %A, <4 x i32> %B) nounwind { define <4 x i32> @test1(<4 x i32> %A, <4 x i32> %B) nounwind {
@ -14,8 +14,8 @@ define <4 x i32> @test1(<4 x i32> %A, <4 x i32> %B) nounwind {
define <4 x i32> @test2(<4 x i32> %A, <4 x i32> %B) nounwind { define <4 x i32> @test2(<4 x i32> %A, <4 x i32> %B) nounwind {
; CHECK: test2: ; CHECK: test2:
; CHECK: pcmp ; CHECK: pcmp
; CHECK: pcmp ; CHECK: pxor LCP
; CHECK: pxor ; CHECK: movdqa
; CHECK: ret ; CHECK: ret
%C = icmp sge <4 x i32> %A, %B %C = icmp sge <4 x i32> %A, %B
%D = sext <4 x i1> %C to <4 x i32> %D = sext <4 x i1> %C to <4 x i32>