Add a bit to mark operands of asm's that conflict

with an earlyclobber operand elsewhere.  Propagate
this bit and the earlyclobber bit through SDISel.
Change linear-scan RA not to allocate regs in a way 
that conflicts with an earlyclobber.  See also comments.

llvm-svn: 56290
This commit is contained in:
Dale Johannesen 2008-09-17 21:13:11 +00:00
parent d3225118a6
commit 99091ed94f
11 changed files with 208 additions and 28 deletions

View File

@ -28,6 +28,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include <cmath>
#include <map>
namespace llvm {
@ -64,6 +65,22 @@ namespace llvm {
AliasAnalysis *aa_;
LiveVariables* lv_;
/// AsmsWithEarlyClobber - maps a virtual register number to all the
/// inline asm's that have the register marked earlyclobber.
///
std::multimap<unsigned, MachineInstr*> AsmsThatEarlyClobber;
/// AsmsWithEarlyClobberConflict - maps a virtual register number
/// to all the inline asm's that have earlyclobber operands elsewhere
/// and use the register as a (non-earlyclobber) input.
///
/// Note: earlyclobber operands may not be assigned the same register as
/// each other, or as earlyclobber-conflict operands. However two
/// earlyclobber-conflict operands may be assigned the same register if
/// they happen to contain the same value.
///
std::multimap<unsigned, MachineInstr*> AsmsWithEarlyClobberConflict;
/// Special pool allocator for VNInfo's (LiveInterval val#).
///
BumpPtrAllocator VNInfoAllocator;
@ -336,6 +353,11 @@ namespace llvm {
unsigned getNumConflictsWithPhysReg(const LiveInterval &li,
unsigned PhysReg) const;
/// noEarlyclobberConflict - see whether virtual reg VReg has a conflict
/// with hard reg HReg because HReg is used as an earlyclobber register in
/// asm that also has VReg live into or across it.
bool noEarlyclobberConflict(unsigned VReg, VirtRegMap &vrm, unsigned HReg);
/// computeNumbering - Compute the index numbering.
void computeNumbering();

View File

@ -73,6 +73,12 @@ private:
/// for description of earlyclobber.
bool IsEarlyClobber : 1;
/// OverlapsEarlyClobber - True if this MO_Register operand is used as an
/// input to an inline asm that has the earlyclobber bit set on some other
/// operand. Flag is not valid for any other case. See gcc doc
/// for description of earlyclobber.
bool OverlapsEarlyClobber : 1;
/// SubReg - Subregister number, only valid for MO_Register. A value of 0
/// indicates the MO_Register has no subReg.
unsigned char SubReg;
@ -182,6 +188,11 @@ public:
return IsEarlyClobber;
}
bool overlapsEarlyClobber() const {
assert(isRegister() && "Wrong MachineOperand accessor");
return OverlapsEarlyClobber;
}
/// getNextOperandForReg - Return the next MachineOperand in the function that
/// uses or defines this register.
MachineOperand *getNextOperandForReg() const {
@ -232,6 +243,11 @@ public:
IsEarlyClobber = Val;
}
void setOverlapsEarlyClobber(bool Val = true) {
assert(isRegister() && "Wrong MachineOperand accessor");
OverlapsEarlyClobber = Val;
}
//===--------------------------------------------------------------------===//
// Accessors for various operand types.
//===--------------------------------------------------------------------===//
@ -337,13 +353,15 @@ public:
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp = false,
bool isKill = false, bool isDead = false,
unsigned SubReg = 0,
bool isEarlyClobber = false) {
bool isEarlyClobber = false,
bool overlapsEarlyClobber = false) {
MachineOperand Op(MachineOperand::MO_Register);
Op.IsDef = isDef;
Op.IsImp = isImp;
Op.IsKill = isKill;
Op.IsDead = isDead;
Op.IsEarlyClobber = isEarlyClobber;
Op.OverlapsEarlyClobber = overlapsEarlyClobber;
Op.Contents.Reg.RegNo = Reg;
Op.Contents.Reg.Prev = 0;
Op.Contents.Reg.Next = 0;
@ -390,6 +408,7 @@ public:
IsKill = MO.IsKill;
IsDead = MO.IsDead;
IsEarlyClobber = MO.IsEarlyClobber;
OverlapsEarlyClobber = MO.OverlapsEarlyClobber;
SubReg = MO.SubReg;
ParentMI = MO.ParentMI;
Contents = MO.Contents;

View File

@ -361,7 +361,8 @@ namespace llvm {
void AddOperand(MachineInstr *MI, SDValue Op, unsigned IIOpNum,
const TargetInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap);
DenseMap<SDValue, unsigned> &VRBaseMap,
bool overlapsEarlyClobber = false);
void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);

View File

@ -1325,7 +1325,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
false, false, false);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
if ((OpFlags & 7) == 4 /*ADDR MODE*/ ||
(OpFlags & 7) == 7) /*ADDR MODE OVERLAPS EARLYCLOBBER*/ {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {

View File

@ -673,7 +673,10 @@ exit:
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
void LiveIntervals::computeIntervals() {
AsmsThatEarlyClobber.clear();
AsmsWithEarlyClobberConflict.clear();
DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n';
@ -710,8 +713,17 @@ void LiveIntervals::computeIntervals() {
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
// handle register defs - build intervals
if (MO.isRegister() && MO.getReg() && MO.isDef())
if (MO.isRegister() && MO.getReg() && MO.isDef()) {
handleRegisterDef(MBB, MI, MIIndex, MO, i);
if (MO.isEarlyClobber()) {
AsmsThatEarlyClobber.insert(std::make_pair(MO.getReg(), MI));
}
}
if (MO.isRegister() && !MO.isDef() &&
MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()) &&
MO.overlapsEarlyClobber()) {
AsmsWithEarlyClobberConflict.insert(std::make_pair(MO.getReg(), MI));
}
}
MIIndex += InstrSlots::NUM;
@ -740,6 +752,72 @@ bool LiveIntervals::findLiveInMBBs(const LiveRange &LR,
return ResVal;
}
/// noEarlyclobberConflict - see whether virtual reg VReg has a conflict with
/// hard reg HReg because of earlyclobbers.
///
/// Earlyclobber operands may not be assigned the same register as
/// each other, or as earlyclobber-conflict operands (i.e. those that
/// are non-earlyclobbered inputs to an asm that also has earlyclobbers).
///
/// Thus there are two cases to check for:
/// 1. VReg is an earlyclobber-conflict register and HReg is an earlyclobber
/// register in some asm that also has VReg as an input.
/// 2. VReg is an earlyclobber register and HReg is an earlyclobber-conflict
/// input elsewhere in some asm.
/// In both cases HReg can be assigned by the user, or assigned early in
/// register allocation.
///
/// Dropping the distinction between earlyclobber and earlyclobber-conflict,
/// keeping only one multimap, looks promising, but two earlyclobber-conflict
/// operands may be assigned the same register if they happen to contain the
/// same value, and that implementation would prevent this.
///
bool LiveIntervals::noEarlyclobberConflict(unsigned VReg, VirtRegMap &vrm,
unsigned HReg) {
typedef std::multimap<unsigned, MachineInstr*>::iterator It;
// Short circuit the most common case.
if (AsmsWithEarlyClobberConflict.size()!=0) {
std::pair<It, It> x = AsmsWithEarlyClobberConflict.equal_range(VReg);
for (It I = x.first; I!=x.second; I++) {
MachineInstr* MI = I->second;
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegister() && MO.isEarlyClobber()) {
unsigned PhysReg = MO.getReg();
if (PhysReg && TargetRegisterInfo::isVirtualRegister(PhysReg)) {
if (!vrm.hasPhys(PhysReg))
continue;
PhysReg = vrm.getPhys(PhysReg);
}
if (PhysReg==HReg)
return false;
}
}
}
}
// Short circuit the most common case.
if (AsmsThatEarlyClobber.size()!=0) {
std::pair<It, It> x = AsmsThatEarlyClobber.equal_range(VReg);
for (It I = x.first; I!=x.second; I++) {
MachineInstr* MI = I->second;
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegister() && MO.overlapsEarlyClobber()) {
unsigned PhysReg = MO.getReg();
if (PhysReg && TargetRegisterInfo::isVirtualRegister(PhysReg)) {
if (!vrm.hasPhys(PhysReg))
continue;
PhysReg = vrm.getPhys(PhysReg);
}
if (PhysReg==HReg)
return false;
}
}
}
}
return true;
}
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?

View File

@ -109,6 +109,7 @@ void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
// register's use/def lists.
if (isRegister()) {
assert(!isEarlyClobber());
assert(!isEarlyClobber() && !overlapsEarlyClobber());
setReg(Reg);
} else {
// Otherwise, change this to a register and set the reg#.
@ -128,6 +129,7 @@ void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
IsKill = isKill;
IsDead = isDead;
IsEarlyClobber = false;
OverlapsEarlyClobber = false;
SubReg = 0;
}
@ -183,13 +185,20 @@ void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const {
OS << "%mreg" << getReg();
}
if (isDef() || isKill() || isDead() || isImplicit() || isEarlyClobber()) {
if (isDef() || isKill() || isDead() || isImplicit() || isEarlyClobber() ||
overlapsEarlyClobber()) {
OS << "<";
bool NeedComma = false;
if (overlapsEarlyClobber()) {
NeedComma = true;
OS << "overlapsearly";
}
if (isImplicit()) {
if (NeedComma) OS << ",";
OS << (isDef() ? "imp-def" : "imp-use");
NeedComma = true;
} else if (isDef()) {
if (NeedComma) OS << ",";
if (isEarlyClobber())
OS << "earlyclobber,";
OS << "def";

View File

@ -1050,7 +1050,8 @@ unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_);
assert(I != E && "No allocatable register in this register class!");
for (; I != E; ++I)
if (prt_->isRegAvail(*I)) {
if (prt_->isRegAvail(*I) &&
li_->noEarlyclobberConflict(cur->reg, *vrm_, *I)) {
FreeReg = *I;
if (FreeReg < inactiveCounts.size())
FreeRegInactiveCount = inactiveCounts[FreeReg];
@ -1070,7 +1071,8 @@ unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
for (; I != E; ++I) {
unsigned Reg = *I;
if (prt_->isRegAvail(Reg) && Reg < inactiveCounts.size() &&
FreeRegInactiveCount < inactiveCounts[Reg]) {
FreeRegInactiveCount < inactiveCounts[Reg] &&
li_->noEarlyclobberConflict(cur->reg, *vrm_, Reg)) {
FreeReg = Reg;
FreeRegInactiveCount = inactiveCounts[Reg];
if (FreeRegInactiveCount == MaxInactiveCount)

View File

@ -231,7 +231,8 @@ unsigned ScheduleDAG::getVR(SDValue Op,
void ScheduleDAG::AddOperand(MachineInstr *MI, SDValue Op,
unsigned IIOpNum,
const TargetInstrDesc *II,
DenseMap<SDValue, unsigned> &VRBaseMap) {
DenseMap<SDValue, unsigned> &VRBaseMap,
bool overlapsEarlyClobber) {
if (Op.isMachineOpcode()) {
// Note that this case is redundant with the final else block, but we
// include it because it is the most common and it makes the logic
@ -244,7 +245,9 @@ void ScheduleDAG::AddOperand(MachineInstr *MI, SDValue Op,
const TargetInstrDesc &TID = MI->getDesc();
bool isOptDef = IIOpNum < TID.getNumOperands() &&
TID.OpInfo[IIOpNum].isOptionalDef();
MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef, false, false,
false, 0, false,
overlapsEarlyClobber));
// Verify that it is right.
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
@ -278,7 +281,9 @@ void ScheduleDAG::AddOperand(MachineInstr *MI, SDValue Op,
const ConstantFP *CFP = F->getConstantFPValue();
MI->addOperand(MachineOperand::CreateFPImm(CFP));
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
MI->addOperand(MachineOperand::CreateReg(R->getReg(), false, false,
false, false, 0, false,
overlapsEarlyClobber));
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset()));
} else if (BasicBlockSDNode *BB = dyn_cast<BasicBlockSDNode>(Op)) {
@ -314,7 +319,9 @@ void ScheduleDAG::AddOperand(MachineInstr *MI, SDValue Op,
Op.getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
unsigned VReg = getVR(Op, VRBaseMap);
MI->addOperand(MachineOperand::CreateReg(VReg, false));
MI->addOperand(MachineOperand::CreateReg(VReg, false, false,
false, false, 0, false,
overlapsEarlyClobber));
// Verify that it is right. Note that the reg class of the physreg and the
// vreg don't necessarily need to match, but the target copy insertion has
@ -596,6 +603,7 @@ void ScheduleDAG::EmitNode(SDNode *Node, bool IsClone,
// Add all of the operand registers to the instruction.
for (unsigned i = 2; i != NumOps;) {
bool overlapsEarlyClobber = false;
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = Flags >> 3;
@ -618,13 +626,18 @@ void ScheduleDAG::EmitNode(SDNode *Node, bool IsClone,
false, 0, true));
}
break;
case 7: // Addressing mode overlapping earlyclobber.
case 5: // Use of register overlapping earlyclobber.
overlapsEarlyClobber = true;
// fall through
case 1: // Use of register.
case 3: // Immediate.
case 4: // Addressing mode.
// The addressing mode has been selected, just add all of the
// operands to the machine instruction.
for (; NumVals; --NumVals, ++i)
AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap,
overlapsEarlyClobber);
break;
}
}

View File

@ -4909,8 +4909,10 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
assert(OpInfo.isIndirect && "Memory output must be indirect operand");
// Add information to the INLINEASM node to know about this output.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
unsigned ResOpType = SawEarlyClobber ?
7 /* MEM OVERLAPS EARLYCLOBBER */ :
4/*MEM*/;
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType | (1<<3),
TLI.getPointerTy()));
AsmNodeOperands.push_back(OpInfo.CallOperand);
break;
@ -4963,7 +4965,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
assert(((NumOps & 7) == 2 /*REGDEF*/ ||
(NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
(NumOps & 7) == 4 /*MEM*/) &&
(NumOps & 7) == 4 /*MEM*/ ||
(NumOps & 7) == 7 /*MEM OVERLAPS EARLYCLOBBER*/) &&
"Skipped past definitions?");
CurOp += (NumOps>>3)+1;
}
@ -4985,14 +4988,17 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// Use the produced MatchedRegs object to
MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
MatchedRegs.AddInlineAsmOperands(SawEarlyClobber ?
1 /*REGUSE*/ :
5 /*REGUSE OVERLAPS EARLYCLOBBER*/,
DAG, AsmNodeOperands);
break;
} else {
assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
assert(((NumOps & 7) == 7/*MEM OVERLAPS EARLYCLOBBER */ ||
(NumOps & 7) == 4) && "Unknown matching constraint!");
assert((NumOps >> 3) == 1 && "Unexpected number of operands");
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps,
TLI.getPointerTy()));
AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
break;
@ -5024,8 +5030,10 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
"Memory operands expect pointer values");
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
unsigned ResOpType = SawEarlyClobber ?
7 /* MEM OVERLAPS EARLYCLOBBER */ :
4/*MEM*/;
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType | (1<<3),
TLI.getPointerTy()));
AsmNodeOperands.push_back(InOperandVal);
break;
@ -5043,16 +5051,18 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
AsmNodeOperands);
OpInfo.AssignedRegs.AddInlineAsmOperands(SawEarlyClobber ?
5 /*REGUSE OVERLAPS EARLYCLOBBER*/:
1/*REGUSE*/,
DAG, AsmNodeOperands);
break;
}
case InlineAsm::isClobber: {
// Add the clobbered value to the operand list, so that the register
// allocator is aware that the physreg got clobbered.
if (!OpInfo.AssignedRegs.Regs.empty())
OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
AsmNodeOperands);
OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
DAG, AsmNodeOperands);
break;
}
}

View File

@ -1113,7 +1113,8 @@ SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
if ((Flags & 7) != 4 /*MEM*/) {
if ((Flags & 7) != 4 /*MEM*/ &&
(Flags & 7) != 7 /*MEM OVERLAPS EARLYCLOBBER*/) {
// Just skip over this operand, copying the operands verbatim.
Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
i += (Flags >> 3) + 1;
@ -1128,7 +1129,7 @@ SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
// Add this to the output node.
MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
Ops.push_back(CurDAG->getTargetConstant((Flags & 7) | (SelOps.size()<< 3),
IntPtrTy));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;

View File

@ -0,0 +1,24 @@
; RUN: llvm-as < %s | llc -o - -march=x86 | not grep "movl %eax, %eax"
; RUN: llvm-as < %s | llc -o - -march=x86 | not grep "movl %edx, %edx"
; RUN: llvm-as < %s | llc -o - -march=x86 | not grep "movl (%eax), %eax"
; RUN: llvm-as < %s | llc -o - -march=x86 | not grep "movl (%edx), %edx"
; %0 must not be put in EAX or EDX.
; In the first asm, $0 and $2 must not be put in EAX.
; In the second asm, $0 and $2 must not be put in EDX.
; This is kind of hard to test thoroughly, but the things above should continue
; to pass, I think.
; ModuleID = '<stdin>'
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin8"
@x = common global i32 0 ; <i32*> [#uses=1]
define i32 @aci(i32* %pw) nounwind {
entry:
%0 = load i32* @x, align 4 ; <i32> [#uses=1]
%asmtmp = tail call { i32, i32 } asm "movl $0, %eax\0A\090:\0A\09test %eax, %eax\0A\09je 1f\0A\09movl %eax, $2\0A\09incl $2\0A\09lock\0A\09cmpxchgl $2, $0\0A\09jne 0b\0A\091:", "=*m,=&{ax},=&r,*m,~{dirflag},~{fpsr},~{flags},~{memory},~{cc}"(i32* %pw, i32* %pw) nounwind ; <{ i32, i32 }> [#uses=0]
%asmtmp2 = tail call { i32, i32 } asm "movl $0, %edx\0A\090:\0A\09test %edx, %edx\0A\09je 1f\0A\09movl %edx, $2\0A\09incl $2\0A\09lock\0A\09cmpxchgl $2, $0\0A\09jne 0b\0A\091:", "=*m,=&{dx},=&r,*m,~{dirflag},~{fpsr},~{flags},~{memory},~{cc}"(i32* %pw, i32* %pw) nounwind ; <{ i32, i32 }> [#uses=1]
%asmresult3 = extractvalue { i32, i32 } %asmtmp2, 0 ; <i32> [#uses=1]
%1 = add i32 %asmresult3, %0 ; <i32> [#uses=1]
ret i32 %1
}