Extend hasStoreToStackSlot with list of FI accesses.

For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.

This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.

Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB

Reviewed By: MatzeB

Differential Revision: https://reviews.llvm.org/D51537

llvm-svn: 341301
This commit is contained in:
Sander de Smalen 2018-09-03 09:15:58 +00:00
parent cb0fa9d8de
commit 9de07a620d
16 changed files with 130 additions and 97 deletions

View File

@ -79,6 +79,13 @@ public:
return Opc <= TargetOpcode::GENERIC_OP_END;
}
// Simple struct describing access to a FrameIndex.
struct FrameAccess {
const MachineMemOperand *MMO;
int FI;
FrameAccess(const MachineMemOperand *MMO, int FI) : MMO(MMO), FI(FI) {}
};
/// Given a machine instruction descriptor, returns the register
/// class constraint for OpNum, or NULL.
const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
@ -246,14 +253,13 @@ public:
}
/// If the specified machine instruction has a load from a stack slot,
/// return true along with the FrameIndex of the loaded stack slot and the
/// machine mem operand containing the reference.
/// return true along with the FrameIndices of the loaded stack slot and the
/// machine mem operands containing the reference.
/// If not, return false. Unlike isLoadFromStackSlot, this returns true for
/// any instructions that loads from the stack. This is just a hint, as some
/// cases may be missed.
virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
SmallVectorImpl<FrameAccess> &Accesses) const;
/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
@ -284,14 +290,13 @@ public:
}
/// If the specified machine instruction has a store to a stack slot,
/// return true along with the FrameIndex of the loaded stack slot and the
/// machine mem operand containing the reference.
/// return true along with the FrameIndices of the loaded stack slot and the
/// machine mem operands containing the reference.
/// If not, return false. Unlike isStoreToStackSlot,
/// this returns true for any instructions that stores to the
/// stack. This is just a hint, as some cases may be missed.
virtual bool hasStoreToStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
SmallVectorImpl<FrameAccess> &Accesses) const;
/// Return true if the specified machine instruction
/// is a copy of one stack slot to another and has no other effect.

View File

@ -750,18 +750,28 @@ static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
const MachineFrameInfo &MFI = MF->getFrameInfo();
bool Commented = false;
auto getSize = [&MFI](
const SmallVectorImpl<TargetInstrInfo::FrameAccess> &Accesses) {
unsigned Size = 0;
for (auto &A : Accesses)
if (MFI.isSpillSlotObjectIndex(A.FI))
Size += A.MMO->getSize();
return Size;
};
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
SmallVector<TargetInstrInfo::FrameAccess, 2> Accesses;
if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload";
Commented = true;
}
} else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
CommentOS << MMO->getSize() << "-byte Folded Reload";
} else if (TII->hasLoadFromStackSlot(MI, Accesses)) {
if (auto Size = getSize(Accesses)) {
CommentOS << Size << "-byte Folded Reload";
Commented = true;
}
} else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
@ -770,9 +780,9 @@ static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
CommentOS << MMO->getSize() << "-byte Spill";
Commented = true;
}
} else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
if (MFI.isSpillSlotObjectIndex(FI)) {
CommentOS << MMO->getSize() << "-byte Folded Spill";
} else if (TII->hasStoreToStackSlot(MI, Accesses)) {
if (auto Size = getSize(Accesses)) {
CommentOS << Size << "-byte Folded Spill";
Commented = true;
}
}

View File

@ -470,7 +470,7 @@ bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg) {
const MachineFrameInfo &FrameInfo = MF->getFrameInfo();
int FI;
const MachineMemOperand *MMO;
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
// TODO: Handle multiple stores folded into one.
if (!MI.hasOneMemOperand())
@ -478,7 +478,7 @@ bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
// To identify a spill instruction, use the same criteria as in AsmPrinter.
if (!((TII->isStoreToStackSlotPostFE(MI, FI) ||
TII->hasStoreToStackSlot(MI, MMO, FI)) &&
TII->hasStoreToStackSlot(MI, Accesses)) &&
FrameInfo.isSpillSlotObjectIndex(FI)))
return false;

View File

@ -3120,18 +3120,24 @@ void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
// Handle blocks that were not included in subloops.
if (Loops->getLoopFor(MBB) == L)
for (MachineInstr &MI : *MBB) {
const MachineMemOperand *MMO;
SmallVector<TargetInstrInfo::FrameAccess, 2> Accesses;
if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
++Reloads;
else if (TII->hasLoadFromStackSlot(MI, MMO, FI) &&
MFI.isSpillSlotObjectIndex(FI))
else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
llvm::any_of(Accesses,
[&MFI](const TargetInstrInfo::FrameAccess &A) {
return MFI.isSpillSlotObjectIndex(A.FI);
}))
++FoldedReloads;
else if (TII->isStoreToStackSlot(MI, FI) &&
MFI.isSpillSlotObjectIndex(FI))
++Spills;
else if (TII->hasStoreToStackSlot(MI, MMO, FI) &&
MFI.isSpillSlotObjectIndex(FI))
else if (TII->hasStoreToStackSlot(MI, Accesses) &&
llvm::any_of(Accesses,
[&MFI](const TargetInstrInfo::FrameAccess &A) {
return MFI.isSpillSlotObjectIndex(A.FI);
}))
++FoldedSpills;
}

View File

@ -339,42 +339,37 @@ bool TargetInstrInfo::PredicateInstruction(
return MadeChange;
}
bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
bool TargetInstrInfo::hasLoadFromStackSlot(
const MachineInstr &MI, SmallVectorImpl<FrameAccess> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isLoad()) {
if (const FixedStackPseudoSourceValue *Value =
dyn_cast_or_null<FixedStackPseudoSourceValue>(
(*o)->getPseudoValue())) {
FrameIndex = Value->getFrameIndex();
MMO = *o;
return true;
}
(*o)->getPseudoValue()))
Accesses.emplace_back(*o, Value->getFrameIndex());
}
}
return false;
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
bool TargetInstrInfo::hasStoreToStackSlot(
const MachineInstr &MI, SmallVectorImpl<FrameAccess> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isStore()) {
if (const FixedStackPseudoSourceValue *Value =
dyn_cast_or_null<FixedStackPseudoSourceValue>(
(*o)->getPseudoValue())) {
FrameIndex = Value->getFrameIndex();
MMO = *o;
return true;
}
(*o)->getPseudoValue()))
Accesses.emplace_back(*o, Value->getFrameIndex());
}
}
return false;
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,

View File

@ -1172,8 +1172,12 @@ unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
const MachineMemOperand *Dummy;
return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) {
FrameIndex = Accesses.begin()->FI;
return true;
}
return false;
}
void ARMBaseInstrInfo::
@ -1386,8 +1390,12 @@ unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const {
const MachineMemOperand *Dummy;
return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) {
FrameIndex = Accesses.begin()->FI;
return true;
}
return false;
}
/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD

View File

@ -335,37 +335,37 @@ unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
/// This function checks if the instruction or bundle of instructions
/// has load from stack slot and returns frameindex and machine memory
/// operand of that instruction if true.
bool HexagonInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
bool HexagonInstrInfo::hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<TargetInstrInfo::FrameAccess> &Accesses) const {
if (MI.isBundle()) {
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
if (TargetInstrInfo::hasLoadFromStackSlot(*MII, MMO, FrameIndex))
if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
return true;
return false;
}
return TargetInstrInfo::hasLoadFromStackSlot(MI, MMO, FrameIndex);
return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
}
/// This function checks if the instruction or bundle of instructions
/// has store to stack slot and returns frameindex and machine memory
/// operand of that instruction if true.
bool HexagonInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
bool HexagonInstrInfo::hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<TargetInstrInfo::FrameAccess> &Accesses) const {
if (MI.isBundle()) {
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
if (TargetInstrInfo::hasStoreToStackSlot(*MII, MMO, FrameIndex))
if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
return true;
return false;
}
return TargetInstrInfo::hasStoreToStackSlot(MI, MMO, FrameIndex);
return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
}
/// This function can analyze one/two way branching only and should (mostly) be

View File

@ -69,16 +69,16 @@ public:
/// Check if the instruction or the bundle of instructions has
/// load from stack slots. Return the frameindex and machine memory operand
/// if true.
bool hasLoadFromStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const override;
bool hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<TargetInstrInfo::FrameAccess> &Accesses) const override;
/// Check if the instruction or the bundle of instructions has
/// store to stack slots. Return the frameindex and machine memory operand
/// if true.
bool hasStoreToStackSlot(const MachineInstr &MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const override;
bool hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<TargetInstrInfo::FrameAccess> &Accesses) const override;
/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't

View File

@ -733,8 +733,11 @@ unsigned LanaiInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
if (hasLoadFromStackSlot(MI, Accesses)){
FrameIndex = Accesses.begin()->FI;
return 1;
}
}
return 0;
}

View File

@ -411,8 +411,11 @@ unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
if (hasLoadFromStackSlot(MI, Accesses)) {
FrameIndex = Accesses.begin()->FI;
return 1;
}
}
return 0;
}
@ -441,8 +444,11 @@ unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasStoreToStackSlot(MI, Dummy, FrameIndex);
SmallVector<TargetInstrInfo::FrameAccess, 1> Accesses;
if (hasStoreToStackSlot(MI, Accesses)) {
FrameIndex = Accesses.begin()->FI;
return 1;
}
}
return 0;
}

View File

@ -206,11 +206,11 @@ define i32 @in_multiuse_A_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK-NEXT: eor w8, w0, w1
; CHECK-NEXT: and w20, w8, #0xffff00
; CHECK-NEXT: mov w0, w20
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y
@ -225,12 +225,12 @@ define i32 @in_multiuse_B_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK: // %bb.0:
; CHECK-NEXT: str x20, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: eor w0, w0, w1
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: and w20, w0, #0xffff00
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y

View File

@ -212,11 +212,11 @@ define i32 @in_multiuse_A_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK-NEXT: eor w8, w0, w1
; CHECK-NEXT: and w20, w8, #0x55555555
; CHECK-NEXT: mov w0, w20
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y
@ -231,12 +231,12 @@ define i32 @in_multiuse_B_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK: // %bb.0:
; CHECK-NEXT: str x20, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: eor w0, w0, w1
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: and w20, w0, #0x55555555
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y

View File

@ -208,11 +208,11 @@ define i32 @in_multiuse_A_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK-NEXT: eor w8, w0, w1
; CHECK-NEXT: and w20, w8, #0xf0f0f0f
; CHECK-NEXT: mov w0, w20
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y
@ -227,12 +227,12 @@ define i32 @in_multiuse_B_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK: // %bb.0:
; CHECK-NEXT: str x20, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: eor w0, w0, w1
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: and w20, w0, #0xf0f0f0f
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y

View File

@ -201,11 +201,11 @@ define i32 @in_multiuse_A_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK-NEXT: eor w8, w0, w1
; CHECK-NEXT: and w20, w8, #0xffff
; CHECK-NEXT: mov w0, w20
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y
@ -220,12 +220,12 @@ define i32 @in_multiuse_B_constmask(i32 %x, i32 %y, i32 %z) nounwind {
; CHECK: // %bb.0:
; CHECK-NEXT: str x20, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: eor w0, w0, w1
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: and w20, w0, #0xffff
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y

View File

@ -558,11 +558,11 @@ define i32 @in_multiuse_A(i32 %x, i32 %y, i32 %z, i32 %mask) nounwind {
; CHECK-NEXT: eor w8, w0, w1
; CHECK-NEXT: and w20, w8, w3
; CHECK-NEXT: mov w0, w20
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y
@ -576,12 +576,12 @@ define i32 @in_multiuse_B(i32 %x, i32 %y, i32 %z, i32 %mask) nounwind {
; CHECK: // %bb.0:
; CHECK-NEXT: str x20, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: eor w0, w0, w1
; CHECK-NEXT: stp x19, x30, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp x19, x30, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: mov w19, w1
; CHECK-NEXT: and w20, w0, w3
; CHECK-NEXT: bl use32
; CHECK-NEXT: eor w0, w20, w19
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp x19, x30, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: ldr x20, [sp], #32 // 8-byte Folded Reload
; CHECK-NEXT: ret
%n0 = xor i32 %x, %y

View File

@ -141,8 +141,8 @@ define <5 x float> @sin_v5f32(<5 x float> %x) nounwind {
; CHECK-LABEL: sin_v5f32:
; CHECK: // %bb.0:
; CHECK-NEXT: str d12, [sp, #-48]! // 8-byte Folded Spill
; CHECK-NEXT: stp d11, d10, [sp, #8] // 8-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #24] // 8-byte Folded Spill
; CHECK-NEXT: stp d11, d10, [sp, #8] // 16-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #24] // 16-byte Folded Spill
; CHECK-NEXT: str x30, [sp, #40] // 8-byte Folded Spill
; CHECK-NEXT: mov v8.16b, v4.16b
; CHECK-NEXT: mov v9.16b, v3.16b
@ -165,8 +165,8 @@ define <5 x float> @sin_v5f32(<5 x float> %x) nounwind {
; CHECK-NEXT: mov v2.16b, v10.16b
; CHECK-NEXT: mov v3.16b, v9.16b
; CHECK-NEXT: ldr x30, [sp, #40] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #24] // 8-byte Folded Reload
; CHECK-NEXT: ldp d11, d10, [sp, #8] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #24] // 16-byte Folded Reload
; CHECK-NEXT: ldp d11, d10, [sp, #8] // 16-byte Folded Reload
; CHECK-NEXT: mov v4.16b, v0.16b
; CHECK-NEXT: mov v0.16b, v12.16b
; CHECK-NEXT: ldr d12, [sp], #48 // 8-byte Folded Reload
@ -178,9 +178,9 @@ define <5 x float> @sin_v5f32(<5 x float> %x) nounwind {
define <6 x float> @sin_v6f32(<6 x float> %x) nounwind {
; CHECK-LABEL: sin_v6f32:
; CHECK: // %bb.0:
; CHECK-NEXT: stp d13, d12, [sp, #-64]! // 8-byte Folded Spill
; CHECK-NEXT: stp d11, d10, [sp, #16] // 8-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #32] // 8-byte Folded Spill
; CHECK-NEXT: stp d13, d12, [sp, #-64]! // 16-byte Folded Spill
; CHECK-NEXT: stp d11, d10, [sp, #16] // 16-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #32] // 16-byte Folded Spill
; CHECK-NEXT: str x30, [sp, #48] // 8-byte Folded Spill
; CHECK-NEXT: mov v8.16b, v5.16b
; CHECK-NEXT: mov v9.16b, v4.16b
@ -207,12 +207,12 @@ define <6 x float> @sin_v6f32(<6 x float> %x) nounwind {
; CHECK-NEXT: mov v3.16b, v10.16b
; CHECK-NEXT: mov v4.16b, v9.16b
; CHECK-NEXT: ldr x30, [sp, #48] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #32] // 8-byte Folded Reload
; CHECK-NEXT: ldp d11, d10, [sp, #16] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #32] // 16-byte Folded Reload
; CHECK-NEXT: ldp d11, d10, [sp, #16] // 16-byte Folded Reload
; CHECK-NEXT: mov v5.16b, v0.16b
; CHECK-NEXT: mov v0.16b, v13.16b
; CHECK-NEXT: mov v1.16b, v12.16b
; CHECK-NEXT: ldp d13, d12, [sp], #64 // 8-byte Folded Reload
; CHECK-NEXT: ldp d13, d12, [sp], #64 // 16-byte Folded Reload
; CHECK-NEXT: ret
%r = call <6 x float> @llvm.sin.v6f32(<6 x float> %x)
ret <6 x float> %r
@ -222,7 +222,7 @@ define <3 x double> @sin_v3f64(<3 x double> %x) nounwind {
; CHECK-LABEL: sin_v3f64:
; CHECK: // %bb.0:
; CHECK-NEXT: str d10, [sp, #-32]! // 8-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #8] // 8-byte Folded Spill
; CHECK-NEXT: stp d9, d8, [sp, #8] // 16-byte Folded Spill
; CHECK-NEXT: str x30, [sp, #24] // 8-byte Folded Spill
; CHECK-NEXT: mov v8.16b, v2.16b
; CHECK-NEXT: mov v9.16b, v1.16b
@ -235,7 +235,7 @@ define <3 x double> @sin_v3f64(<3 x double> %x) nounwind {
; CHECK-NEXT: bl sin
; CHECK-NEXT: mov v1.16b, v9.16b
; CHECK-NEXT: ldr x30, [sp, #24] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #8] // 8-byte Folded Reload
; CHECK-NEXT: ldp d9, d8, [sp, #8] // 16-byte Folded Reload
; CHECK-NEXT: mov v2.16b, v0.16b
; CHECK-NEXT: mov v0.16b, v10.16b
; CHECK-NEXT: ldr d10, [sp], #32 // 8-byte Folded Reload