Separate out parsing of decimal number. Use this to only allocate

memory for the significand once up-front.  Also ignore insignificant
trailing zeroes; this saves unnecessary multiplications later.

llvm-svn: 42964
This commit is contained in:
Neil Booth 2007-10-14 10:16:12 +00:00
parent 850c8739dc
commit a352eb14cd

View File

@ -80,16 +80,11 @@ namespace {
return ((bits) + integerPartWidth - 1) / integerPartWidth;
}
unsigned int
digitValue(unsigned int c)
/* Returns 0U-9U. Return values >= 10U are not digits. */
inline unsigned int
decDigitValue(unsigned int c)
{
unsigned int r;
r = c - '0';
if(r <= 9)
return r;
return -1U;
return c - '0';
}
unsigned int
@ -112,6 +107,47 @@ namespace {
return -1U;
}
/* Return the value of a decimal exponent of the form
[+-]ddddddd.
If the exponent overflows, returns a large exponent with the
appropriate sign. */
static int
readExponent(const char *p)
{
bool isNegative;
unsigned int absExponent;
const unsigned int overlargeExponent = 24000; /* FIXME. */
isNegative = (*p == '-');
if (*p == '-' || *p == '+')
p++;
absExponent = decDigitValue(*p++);
assert (absExponent < 10U);
for (;;) {
unsigned int value;
value = decDigitValue(*p);
if (value >= 10U)
break;
p++;
value += absExponent * 10;
if (absExponent >= overlargeExponent) {
absExponent = overlargeExponent;
break;
}
absExponent = value;
}
if (isNegative)
return -(int) absExponent;
else
return (int) absExponent;
}
/* This is ugly and needs cleaning up, but I don't immediately see
how whilst remaining safe. */
static int
@ -132,8 +168,8 @@ namespace {
for(;;) {
unsigned int value;
value = digitValue(*p);
if(value == -1U)
value = decDigitValue(*p);
if(value >= 10U)
break;
p++;
@ -176,6 +212,62 @@ namespace {
return p;
}
/* Given a normal decimal floating point number of the form
dddd.dddd[eE][+-]ddd
where the decimal point and exponent are optional, fill out the
structure D. If the value is zero, V->firstSigDigit
points to a zero, and the return exponent is zero. */
struct decimalInfo {
const char *firstSigDigit;
const char *lastSigDigit;
int exponent;
};
void
interpretDecimal(const char *p, decimalInfo *D)
{
const char *dot;
p = skipLeadingZeroesAndAnyDot (p, &dot);
D->firstSigDigit = p;
D->exponent = 0;
for (;;) {
if (*p == '.') {
assert(dot == 0);
dot = p++;
}
if (decDigitValue(*p) >= 10U)
break;
p++;
}
/* If number is all zerooes accept any exponent. */
if (p != D->firstSigDigit) {
if (*p == 'e' || *p == 'E')
D->exponent = readExponent(p + 1);
/* Implied decimal point? */
if (!dot)
dot = p;
/* Drop insignificant trailing zeroes. */
do
do
p--;
while (*p == '0');
while (*p == '.');
/* Adjust the specified exponent for any decimal point. */
D->exponent += (dot - p) - (dot > p);
}
D->lastSigDigit = p;
}
/* Return the trailing fraction of a hexadecimal number.
DIGITVALUE is the first hex digit of the fraction, P points to
the next digit. */
@ -1981,104 +2073,65 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
APFloat::opStatus
APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
{
const char *dot, *firstSignificantDigit;
integerPart val, maxVal, decValue;
decimalInfo D;
opStatus fs;
/* Skip leading zeroes and any decimal point. */
p = skipLeadingZeroesAndAnyDot(p, &dot);
firstSignificantDigit = p;
/* Scan the text. */
interpretDecimal(p, &D);
/* The maximum number that can be multiplied by ten with any digit
added without overflowing an integerPart. */
maxVal = (~ (integerPart) 0 - 9) / 10;
val = 0;
while (val <= maxVal) {
if (*p == '.') {
assert(dot == 0);
dot = p++;
}
decValue = digitValue(*p);
if (decValue == -1U)
break;
p++;
val = val * 10 + decValue;
}
integerPart *decSignificand;
unsigned int partCount, maxPartCount;
partCount = 0;
maxPartCount = 4;
decSignificand = new integerPart[maxPartCount];
decSignificand[partCount++] = val;
/* Now continue to do single-part arithmetic for as long as we can.
Then do a part multiplication, and repeat. */
while (decValue != -1U) {
integerPart multiplier;
val = 0;
multiplier = 1;
while (multiplier <= maxVal) {
if (*p == '.') {
assert(dot == 0);
dot = p++;
}
decValue = digitValue(*p);
if (decValue == -1U)
break;
p++;
multiplier *= 10;
val = val * 10 + decValue;
}
if (partCount == maxPartCount) {
integerPart *newDecSignificand;
newDecSignificand = new integerPart[maxPartCount = partCount * 2];
APInt::tcAssign(newDecSignificand, decSignificand, partCount);
delete [] decSignificand;
decSignificand = newDecSignificand;
}
APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
partCount, partCount + 1, false);
/* If we used another part (likely), increase the count. */
if (decSignificand[partCount] != 0)
partCount++;
}
/* Now decSignificand contains the supplied significand ignoring the
decimal point. Figure out our effective exponent, which is the
specified exponent adjusted for any decimal point. */
if (p == firstSignificantDigit) {
/* Ignore the exponent if we are zero - we cannot overflow. */
if (*D.firstSigDigit == '0') {
category = fcZero;
fs = opOK;
} else {
int decimalExponent;
integerPart *decSignificand;
unsigned int partCount;
if (dot)
decimalExponent = dot + 1 - p;
else
decimalExponent = 0;
/* A tight upper bound on number of bits required to hold an
N-digit decimal integer is N * 256 / 77. Allocate enough space
to hold the full significand, and an extra part required by
tcMultiplyPart. */
partCount = (D.lastSigDigit - D.firstSigDigit) + 1;
partCount = partCountForBits(1 + 256 * partCount / 77);
decSignificand = new integerPart[partCount + 1];
partCount = 0;
/* Add the given exponent. */
if (*p == 'e' || *p == 'E')
decimalExponent = totalExponent(p, decimalExponent);
/* Convert to binary efficiently - we do almost all multiplication
in an integerPart. When this would overflow do we do a single
bignum multiplication, and then revert again to multiplication
in an integerPart. */
do {
integerPart decValue, val, multiplier;
val = 0;
multiplier = 1;
do {
if (*p == '.')
p++;
decValue = decDigitValue(*p++);
multiplier *= 10;
val = val * 10 + decValue;
/* The maximum number that can be multiplied by ten with any
digit added without overflowing an integerPart. */
} while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
/* Multiply out the current part. */
APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
partCount, partCount + 1, false);
/* If we used another part (likely but not guaranteed), increase
the count. */
if (decSignificand[partCount])
partCount++;
} while (p <= D.lastSigDigit);
category = fcNormal;
fs = roundSignificandWithExponent(decSignificand, partCount,
decimalExponent, rounding_mode);
}
D.exponent, rounding_mode);
delete [] decSignificand;
delete [] decSignificand;
}
return fs;
}