[DAG] propagate FMF for all FPMathOperators

This is a simple hack based on what's proposed in D37686, but we can extend it if needed in follow-ups. 
It gets us most of the FMF functionality that we want without adding any state bits to the flags. It 
also intentionally leaves out non-FMF flags (nsw, etc) to minimize the patch.

It should provide a superset of the functionality from D46563 - the extra tests show propagation and 
codegen diffs for fcmp, vecreduce, and FP libcalls.

The PPC log2() test shows the limits of this most basic approach - we only applied 'afn' to the last 
node created for the call. AFAIK, there aren't any libcall optimizations based on the flags currently, 
so that shouldn't make any difference.

Differential Revision: https://reviews.llvm.org/D46854

llvm-svn: 332358
This commit is contained in:
Sanjay Patel 2018-05-15 14:16:24 +00:00
parent 3ab4e9e769
commit a66bd4e046
8 changed files with 55 additions and 77 deletions

View File

@ -1069,6 +1069,22 @@ void SelectionDAGBuilder::visit(const Instruction &I) {
visit(I.getOpcode(), I); visit(I.getOpcode(), I);
if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
// Propagate the fast-math-flags of this IR instruction to the DAG node that
// maps to this instruction.
// TODO: We could handle all flags (nsw, etc) here.
// TODO: If an IR instruction maps to >1 node, only the final node will have
// flags set.
if (SDNode *Node = getNodeForIRValue(&I)) {
SDNodeFlags IncomingFlags;
IncomingFlags.copyFMF(*FPMO);
if (!Node->getFlags().isDefined())
Node->setFlags(IncomingFlags);
else
Node->intersectFlagsWith(IncomingFlags);
}
}
if (!isa<TerminatorInst>(&I) && !HasTailCall && if (!isa<TerminatorInst>(&I) && !HasTailCall &&
!isStatepoint(&I)) // statepoints handle their exports internally !isStatepoint(&I)) // statepoints handle their exports internally
CopyToExportRegsIfNeeded(&I); CopyToExportRegsIfNeeded(&I);
@ -2753,9 +2769,6 @@ void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
Flags.setVectorReduction(true); Flags.setVectorReduction(true);
LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
} }
if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
Flags.copyFMF(*FPOp);
}
SDValue Op1 = getValue(I.getOperand(0)); SDValue Op1 = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1)); SDValue Op2 = getValue(I.getOperand(1));
@ -2851,13 +2864,12 @@ void SelectionDAGBuilder::visitFCmp(const User &I) {
predicate = FCmpInst::Predicate(FC->getPredicate()); predicate = FCmpInst::Predicate(FC->getPredicate());
SDValue Op1 = getValue(I.getOperand(0)); SDValue Op1 = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1)); SDValue Op2 = getValue(I.getOperand(1));
ISD::CondCode Condition = getFCmpCondCode(predicate);
// FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. ISD::CondCode Condition = getFCmpCondCode(predicate);
// FIXME: We should propagate the fast-math-flags to the DAG node itself for auto *FPMO = dyn_cast<FPMathOperator>(&I);
// further optimization, but currently FMF is only applicable to binary nodes. if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
if (TM.Options.NoNaNsFPMath)
Condition = getFCmpCodeWithoutNaN(Condition); Condition = getFCmpCodeWithoutNaN(Condition);
EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
I.getType()); I.getType());
setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
@ -8082,8 +8094,6 @@ void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
FastMathFlags FMF; FastMathFlags FMF;
if (isa<FPMathOperator>(I)) if (isa<FPMathOperator>(I))
FMF = I.getFastMathFlags(); FMF = I.getFastMathFlags();
SDNodeFlags SDFlags;
SDFlags.setNoNaNs(FMF.noNaNs());
switch (Intrinsic) { switch (Intrinsic) {
case Intrinsic::experimental_vector_reduce_fadd: case Intrinsic::experimental_vector_reduce_fadd:
@ -8126,10 +8136,10 @@ void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
break; break;
case Intrinsic::experimental_vector_reduce_fmax: case Intrinsic::experimental_vector_reduce_fmax:
Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
break; break;
case Intrinsic::experimental_vector_reduce_fmin: case Intrinsic::experimental_vector_reduce_fmin:
Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
break; break;
default: default:
llvm_unreachable("Unhandled vector reduce intrinsic"); llvm_unreachable("Unhandled vector reduce intrinsic");

View File

@ -687,6 +687,13 @@ public:
SDValue getValue(const Value *V); SDValue getValue(const Value *V);
bool findValue(const Value *V) const; bool findValue(const Value *V) const;
/// Return the SDNode for the specified IR value if it exists.
SDNode *getNodeForIRValue(const Value *V) {
if (NodeMap.find(V) == NodeMap.end())
return nullptr;
return NodeMap[V].getNode();
}
SDValue getNonRegisterValue(const Value *V); SDValue getNonRegisterValue(const Value *V);
SDValue getValueImpl(const Value *V); SDValue getValueImpl(const Value *V);

View File

@ -9,10 +9,9 @@
; CHECK-NEXT: Analyzing result type: v4f64 ; CHECK-NEXT: Analyzing result type: v4f64
; CHECK-NEXT: Split node result: [[VFOUR]]: v4f64 = BUILD_VECTOR ; CHECK-NEXT: Split node result: [[VFOUR]]: v4f64 = BUILD_VECTOR
; FIXME: We dropped the 'reassoc' flag.
; CHECK: Legalizing node: [[VTWO:t.*]]: v2f64 = BUILD_VECTOR ; CHECK: Legalizing node: [[VTWO:t.*]]: v2f64 = BUILD_VECTOR
; CHECK: Legally typed node: [[VTWO]]: v2f64 = BUILD_VECTOR ; CHECK: Legally typed node: [[VTWO]]: v2f64 = BUILD_VECTOR
; CHECK: Legalizing node: t26: v2f64 = fmaxnum nnan [[VTWO]], [[VTWO]] ; CHECK: Legalizing node: t26: v2f64 = fmaxnum nnan reassoc [[VTWO]], [[VTWO]]
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128" target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64--linux-gnu" target triple = "aarch64--linux-gnu"

View File

@ -208,7 +208,7 @@ for.end:
; CHECK-LABEL: VCMPBRCC: ; CHECK-LABEL: VCMPBRCC:
; CHECK-SOFT: bl __aeabi_fcmple ; CHECK-SOFT: bl __aeabi_fcmpgt
; CHECK-SOFT: cmp r0, #0 ; CHECK-SOFT: cmp r0, #0
; CHECK-SOFTFP-FP16: vcvtb.f32.f16 [[S2:s[0-9]]], [[S2]] ; CHECK-SOFTFP-FP16: vcvtb.f32.f16 [[S2:s[0-9]]], [[S2]]

View File

@ -156,7 +156,7 @@ define float @fmul_fadd_fast2(float %x, float %y, float %z) {
; This is the minimum FMF needed for this transform - the FMA allows reassociation. ; This is the minimum FMF needed for this transform - the FMA allows reassociation.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc1:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc1:'
; FMFDEBUG: fma {{t[0-9]+}} ; FMFDEBUG: fma reassoc {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_reassoc1:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_reassoc1:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc1:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc1:'
@ -192,7 +192,7 @@ define float @fmul_fma_reassoc1(float %x) {
; This shouldn't change anything - the intermediate fmul result is now also flagged. ; This shouldn't change anything - the intermediate fmul result is now also flagged.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc2:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc2:'
; FMFDEBUG: fma {{t[0-9]+}} ; FMFDEBUG: fma reassoc {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_reassoc2:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_reassoc2:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc2:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_reassoc2:'
@ -228,7 +228,7 @@ define float @fmul_fma_reassoc2(float %x) {
; The FMA is now fully 'fast'. This implies that reassociation is allowed. ; The FMA is now fully 'fast'. This implies that reassociation is allowed.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast1:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast1:'
; FMFDEBUG: fma {{t[0-9]+}} ; FMFDEBUG: fma nnan ninf nsz arcp contract afn reassoc {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_fast1:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_fast1:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast1:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast1:'
@ -264,7 +264,7 @@ define float @fmul_fma_fast1(float %x) {
; This shouldn't change anything - the intermediate fmul result is now also flagged. ; This shouldn't change anything - the intermediate fmul result is now also flagged.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast2:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast2:'
; FMFDEBUG: fma {{t[0-9]+}} ; FMFDEBUG: fma nnan ninf nsz arcp contract afn reassoc {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_fast2:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'fmul_fma_fast2:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast2:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'fmul_fma_fast2:'
@ -300,7 +300,7 @@ define float @fmul_fma_fast2(float %x) {
; Reduced precision for sqrt is allowed - should use estimate and NR iterations. ; Reduced precision for sqrt is allowed - should use estimate and NR iterations.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_afn:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_afn:'
; FMFDEBUG: fsqrt {{t[0-9]+}} ; FMFDEBUG: fsqrt afn {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'sqrt_afn:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'sqrt_afn:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_afn:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_afn:'
@ -340,7 +340,7 @@ define float @sqrt_afn(float %x) {
; The call is now fully 'fast'. This implies that approximation is allowed. ; The call is now fully 'fast'. This implies that approximation is allowed.
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_fast:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_fast:'
; FMFDEBUG: fsqrt {{t[0-9]+}} ; FMFDEBUG: fsqrt nnan ninf nsz arcp contract afn reassoc {{t[0-9]+}}
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'sqrt_fast:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'sqrt_fast:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_fast:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'sqrt_fast:'
@ -391,10 +391,8 @@ define double @fcmp_nnan(double %a, double %y, double %z) {
; FMF-LABEL: fcmp_nnan: ; FMF-LABEL: fcmp_nnan:
; FMF: # %bb.0: ; FMF: # %bb.0:
; FMF-NEXT: xxlxor 0, 0, 0 ; FMF-NEXT: xxlxor 0, 0, 0
; FMF-NEXT: fcmpu 0, 1, 1 ; FMF-NEXT: xscmpudp 0, 1, 0
; FMF-NEXT: fcmpu 1, 1, 0 ; FMF-NEXT: blt 0, .LBB12_2
; FMF-NEXT: cror 20, 4, 3
; FMF-NEXT: bc 12, 20, .LBB12_2
; FMF-NEXT: # %bb.1: ; FMF-NEXT: # %bb.1:
; FMF-NEXT: fmr 3, 2 ; FMF-NEXT: fmr 3, 2
; FMF-NEXT: .LBB12_2: ; FMF-NEXT: .LBB12_2:
@ -421,13 +419,13 @@ define double @fcmp_nnan(double %a, double %y, double %z) {
; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'log2_approx:' ; FMFDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'log2_approx:'
; FMFDEBUG: ch,glue = PPCISD::CALL_NOP t11, TargetGlobalAddress:i64<double (double)* @log2> ; FMFDEBUG: ch,glue = PPCISD::CALL_NOP t11, TargetGlobalAddress:i64<double (double)* @log2>
; FMFDEBUG: ch,glue = callseq_end t15, TargetConstant:i64<32>, TargetConstant:i64<0>, t15:1 ; FMFDEBUG: ch,glue = callseq_end t15, TargetConstant:i64<32>, TargetConstant:i64<0>, t15:1
; FMFDEBUG: f64,ch,glue = CopyFromReg t16, Register:f64 $f1, t16:1 ; FMFDEBUG: f64,ch,glue = CopyFromReg afn t16, Register:f64 $f1, t16:1
; FMFDEBUG: Type-legalized selection DAG: %bb.0 'log2_approx:' ; FMFDEBUG: Type-legalized selection DAG: %bb.0 'log2_approx:'
; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'log2_approx:' ; GLOBALDEBUG-LABEL: Optimized lowered selection DAG: %bb.0 'log2_approx:'
; GLOBALDEBUG: ch,glue = PPCISD::CALL_NOP t11, TargetGlobalAddress:i64<double (double)* @log2> ; GLOBALDEBUG: ch,glue = PPCISD::CALL_NOP t11, TargetGlobalAddress:i64<double (double)* @log2>
; GLOBALDEBUG: ch,glue = callseq_end t15, TargetConstant:i64<32>, TargetConstant:i64<0>, t15:1 ; GLOBALDEBUG: ch,glue = callseq_end t15, TargetConstant:i64<32>, TargetConstant:i64<0>, t15:1
; GLOBALDEBUG: f64,ch,glue = CopyFromReg t16, Register:f64 $f1, t16:1 ; GLOBALDEBUG: f64,ch,glue = CopyFromReg afn t16, Register:f64 $f1, t16:1
; GLOBALDEBUG: Type-legalized selection DAG: %bb.0 'log2_approx:' ; GLOBALDEBUG: Type-legalized selection DAG: %bb.0 'log2_approx:'
declare double @log2(double) declare double @log2(double)

View File

@ -285,49 +285,33 @@ define <8 x double> @test_intrinsic_fmax_v8f64(<8 x double> %x, <8 x double> %y)
ret <8 x double> %z ret <8 x double> %z
} }
; FIXME: The IR-level FMF should propagate to the node. With nnan, there's no need to blend. ; The IR-level FMF propagate to the node. With nnan, there's no need to blend.
define double @maxnum_intrinsic_nnan_fmf_f64(double %a, double %b) { define double @maxnum_intrinsic_nnan_fmf_f64(double %a, double %b) {
; SSE-LABEL: maxnum_intrinsic_nnan_fmf_f64: ; SSE-LABEL: maxnum_intrinsic_nnan_fmf_f64:
; SSE: # %bb.0: ; SSE: # %bb.0:
; SSE-NEXT: movapd %xmm0, %xmm2 ; SSE-NEXT: maxsd %xmm1, %xmm0
; SSE-NEXT: cmpunordsd %xmm0, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm3
; SSE-NEXT: andpd %xmm1, %xmm3
; SSE-NEXT: maxsd %xmm0, %xmm1
; SSE-NEXT: andnpd %xmm1, %xmm2
; SSE-NEXT: orpd %xmm3, %xmm2
; SSE-NEXT: movapd %xmm2, %xmm0
; SSE-NEXT: retq ; SSE-NEXT: retq
; ;
; AVX-LABEL: maxnum_intrinsic_nnan_fmf_f64: ; AVX-LABEL: maxnum_intrinsic_nnan_fmf_f64:
; AVX: # %bb.0: ; AVX: # %bb.0:
; AVX-NEXT: vmaxsd %xmm0, %xmm1, %xmm2 ; AVX-NEXT: vmaxsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vcmpunordsd %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq ; AVX-NEXT: retq
%r = tail call nnan double @llvm.maxnum.f64(double %a, double %b) %r = tail call nnan double @llvm.maxnum.f64(double %a, double %b)
ret double %r ret double %r
} }
; FIXME: Make sure vectors work too. ; Make sure vectors work too.
define <4 x float> @maxnum_intrinsic_nnan_fmf_f432(<4 x float> %a, <4 x float> %b) { define <4 x float> @maxnum_intrinsic_nnan_fmf_f432(<4 x float> %a, <4 x float> %b) {
; SSE-LABEL: maxnum_intrinsic_nnan_fmf_f432: ; SSE-LABEL: maxnum_intrinsic_nnan_fmf_f432:
; SSE: # %bb.0: ; SSE: # %bb.0:
; SSE-NEXT: movaps %xmm1, %xmm2 ; SSE-NEXT: maxps %xmm1, %xmm0
; SSE-NEXT: maxps %xmm0, %xmm2
; SSE-NEXT: cmpunordps %xmm0, %xmm0
; SSE-NEXT: andps %xmm0, %xmm1
; SSE-NEXT: andnps %xmm2, %xmm0
; SSE-NEXT: orps %xmm1, %xmm0
; SSE-NEXT: retq ; SSE-NEXT: retq
; ;
; AVX-LABEL: maxnum_intrinsic_nnan_fmf_f432: ; AVX-LABEL: maxnum_intrinsic_nnan_fmf_f432:
; AVX: # %bb.0: ; AVX: # %bb.0:
; AVX-NEXT: vmaxps %xmm0, %xmm1, %xmm2 ; AVX-NEXT: vmaxps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vcmpunordps %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq ; AVX-NEXT: retq
%r = tail call nnan <4 x float> @llvm.maxnum.v4f32(<4 x float> %a, <4 x float> %b) %r = tail call nnan <4 x float> @llvm.maxnum.v4f32(<4 x float> %a, <4 x float> %b)
ret <4 x float> %r ret <4 x float> %r

View File

@ -277,49 +277,33 @@ define <8 x double> @test_intrinsic_fmin_v8f64(<8 x double> %x, <8 x double> %y)
ret <8 x double> %z ret <8 x double> %z
} }
; FIXME: The IR-level FMF should propagate to the node. With nnan, there's no need to blend. ; The IR-level FMF propagate to the node. With nnan, there's no need to blend.
define float @minnum_intrinsic_nnan_fmf_f32(float %a, float %b) { define float @minnum_intrinsic_nnan_fmf_f32(float %a, float %b) {
; SSE-LABEL: minnum_intrinsic_nnan_fmf_f32: ; SSE-LABEL: minnum_intrinsic_nnan_fmf_f32:
; SSE: # %bb.0: ; SSE: # %bb.0:
; SSE-NEXT: movaps %xmm0, %xmm2 ; SSE-NEXT: minss %xmm1, %xmm0
; SSE-NEXT: cmpunordss %xmm0, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm3
; SSE-NEXT: andps %xmm1, %xmm3
; SSE-NEXT: minss %xmm0, %xmm1
; SSE-NEXT: andnps %xmm1, %xmm2
; SSE-NEXT: orps %xmm3, %xmm2
; SSE-NEXT: movaps %xmm2, %xmm0
; SSE-NEXT: retq ; SSE-NEXT: retq
; ;
; AVX-LABEL: minnum_intrinsic_nnan_fmf_f32: ; AVX-LABEL: minnum_intrinsic_nnan_fmf_f32:
; AVX: # %bb.0: ; AVX: # %bb.0:
; AVX-NEXT: vminss %xmm0, %xmm1, %xmm2 ; AVX-NEXT: vminss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vcmpunordss %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvps %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq ; AVX-NEXT: retq
%r = tail call nnan float @llvm.minnum.f32(float %a, float %b) %r = tail call nnan float @llvm.minnum.f32(float %a, float %b)
ret float %r ret float %r
} }
; FIXME: Make sure vectors work too. ; Make sure vectors work too.
define <2 x double> @minnum_intrinsic_nnan_fmf_v2f64(<2 x double> %a, <2 x double> %b) { define <2 x double> @minnum_intrinsic_nnan_fmf_v2f64(<2 x double> %a, <2 x double> %b) {
; SSE-LABEL: minnum_intrinsic_nnan_fmf_v2f64: ; SSE-LABEL: minnum_intrinsic_nnan_fmf_v2f64:
; SSE: # %bb.0: ; SSE: # %bb.0:
; SSE-NEXT: movapd %xmm1, %xmm2 ; SSE-NEXT: minpd %xmm1, %xmm0
; SSE-NEXT: minpd %xmm0, %xmm2
; SSE-NEXT: cmpunordpd %xmm0, %xmm0
; SSE-NEXT: andpd %xmm0, %xmm1
; SSE-NEXT: andnpd %xmm2, %xmm0
; SSE-NEXT: orpd %xmm1, %xmm0
; SSE-NEXT: retq ; SSE-NEXT: retq
; ;
; AVX-LABEL: minnum_intrinsic_nnan_fmf_v2f64: ; AVX-LABEL: minnum_intrinsic_nnan_fmf_v2f64:
; AVX: # %bb.0: ; AVX: # %bb.0:
; AVX-NEXT: vminpd %xmm0, %xmm1, %xmm2 ; AVX-NEXT: vminpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vcmpunordpd %xmm0, %xmm0, %xmm0
; AVX-NEXT: vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
; AVX-NEXT: retq ; AVX-NEXT: retq
%r = tail call nnan <2 x double> @llvm.minnum.v2f64(<2 x double> %a, <2 x double> %b) %r = tail call nnan <2 x double> @llvm.minnum.v2f64(<2 x double> %a, <2 x double> %b)
ret <2 x double> %r ret <2 x double> %r

View File

@ -8,9 +8,7 @@ declare <4 x double> @llvm.maxnum.v4f64(<4 x double> %x, <4 x double> %y)
define <4 x double> @via_minnum(<4 x double> %x, <4 x double> %y) { define <4 x double> @via_minnum(<4 x double> %x, <4 x double> %y) {
; CHECK-LABEL: via_minnum: ; CHECK-LABEL: via_minnum:
; CHECK: # %bb.0: ; CHECK: # %bb.0:
; CHECK-NEXT: vminpd %ymm0, %ymm1, %ymm2 ; CHECK-NEXT: vminpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: vcmpunordpd %ymm0, %ymm0, %ymm0
; CHECK-NEXT: vblendvpd %ymm0, %ymm1, %ymm2, %ymm0
; CHECK-NEXT: retq ; CHECK-NEXT: retq
%z = call fast <4 x double> @llvm.minnum.v4f64(<4 x double> %x, <4 x double> %y) readnone %z = call fast <4 x double> @llvm.minnum.v4f64(<4 x double> %x, <4 x double> %y) readnone
ret <4 x double> %z ret <4 x double> %z
@ -19,9 +17,7 @@ define <4 x double> @via_minnum(<4 x double> %x, <4 x double> %y) {
define <4 x double> @via_maxnum(<4 x double> %x, <4 x double> %y) { define <4 x double> @via_maxnum(<4 x double> %x, <4 x double> %y) {
; CHECK-LABEL: via_maxnum: ; CHECK-LABEL: via_maxnum:
; CHECK: # %bb.0: ; CHECK: # %bb.0:
; CHECK-NEXT: vmaxpd %ymm0, %ymm1, %ymm2 ; CHECK-NEXT: vmaxpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: vcmpunordpd %ymm0, %ymm0, %ymm0
; CHECK-NEXT: vblendvpd %ymm0, %ymm1, %ymm2, %ymm0
; CHECK-NEXT: retq ; CHECK-NEXT: retq
%z = call fast <4 x double> @llvm.maxnum.v4f64(<4 x double> %x, <4 x double> %y) readnone %z = call fast <4 x double> @llvm.maxnum.v4f64(<4 x double> %x, <4 x double> %y) readnone
ret <4 x double> %z ret <4 x double> %z