reduce indentation by using 'continue', no functionality change.

llvm-svn: 62477
This commit is contained in:
Chris Lattner 2009-01-19 02:07:32 +00:00
parent c03b442e54
commit af6f58bbf4

View File

@ -221,31 +221,33 @@ static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
// Move all PHI nodes in BB to Succ if they are alive, otherwise
// delete them.
while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
if (PN->use_empty()) {
// Just remove the dead phi. This happens if Succ's PHIs were the only
// users of the PHI nodes.
PN->eraseFromParent();
} else {
// The instruction is alive, so this means that BB must dominate all
// predecessors of Succ (Since all uses of the PN are after its
// definition, so in Succ or a block dominated by Succ. If a predecessor
// of Succ would not be dominated by BB, PN would violate the def before
// use SSA demand). Therefore, we can simply move the phi node to the
// next block.
Succ->getInstList().splice(Succ->begin(),
BB->getInstList(), BB->begin());
// We need to add new entries for the PHI node to account for
// predecessors of Succ that the PHI node does not take into
// account. At this point, since we know that BB dominated succ and all
// of its predecessors, this means that we should any newly added
// incoming edges should use the PHI node itself as the value for these
// edges, because they are loop back edges.
for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
if (OldSuccPreds[i] != BB)
PN->addIncoming(PN, OldSuccPreds[i]);
continue;
}
// The instruction is alive, so this means that BB must dominate all
// predecessors of Succ (Since all uses of the PN are after its
// definition, so in Succ or a block dominated by Succ. If a predecessor
// of Succ would not be dominated by BB, PN would violate the def before
// use SSA demand). Therefore, we can simply move the phi node to the
// next block.
Succ->getInstList().splice(Succ->begin(),
BB->getInstList(), BB->begin());
// We need to add new entries for the PHI node to account for
// predecessors of Succ that the PHI node does not take into
// account. At this point, since we know that BB dominated succ and all
// of its predecessors, this means that we should any newly added
// incoming edges should use the PHI node itself as the value for these
// edges, because they are loop back edges.
for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
if (OldSuccPreds[i] != BB)
PN->addIncoming(PN, OldSuccPreds[i]);
}
}
// Everything that jumped to BB now goes to Succ.