mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:29:58 +00:00
Revert "blockfreq: Approximate irreducible control flow"
This reverts commit r207286. It causes an ICE on the cmake-llvm-x86_64-linux buildbot [1]: llvm/lib/Analysis/BlockFrequencyInfo.cpp: In lambda function: llvm/lib/Analysis/BlockFrequencyInfo.cpp:182:1: internal compiler error: in get_expr_operands, at tree-ssa-operands.c:1035 [1]: http://bb.pgr.jp/builders/cmake-llvm-x86_64-linux/builds/12093/steps/build_llvm/logs/stdio llvm-svn: 207287
This commit is contained in:
parent
3189616c35
commit
c54b3a7e23
@ -8,7 +8,6 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Shared implementation of BlockFrequency for IR and Machine Instructions.
|
||||
// See the documentation below for BlockFrequencyInfoImpl for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -17,7 +16,6 @@
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/PostOrderIterator.h"
|
||||
#include "llvm/ADT/SCCIterator.h"
|
||||
#include "llvm/ADT/iterator_range.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/Support/BlockFrequency.h"
|
||||
@ -898,10 +896,6 @@ class MachineFunction;
|
||||
class MachineLoop;
|
||||
class MachineLoopInfo;
|
||||
|
||||
namespace bfi_detail {
|
||||
struct IrreducibleGraph;
|
||||
}
|
||||
|
||||
/// \brief Base class for BlockFrequencyInfoImpl
|
||||
///
|
||||
/// BlockFrequencyInfoImplBase has supporting data structures and some
|
||||
@ -954,7 +948,6 @@ public:
|
||||
typedef SmallVector<BlockNode, 4> NodeList;
|
||||
LoopData *Parent; ///< The parent loop.
|
||||
bool IsPackaged; ///< Whether this has been packaged.
|
||||
uint32_t NumHeaders; ///< Number of headers.
|
||||
ExitMap Exits; ///< Successor edges (and weights).
|
||||
NodeList Nodes; ///< Header and the members of the loop.
|
||||
BlockMass BackedgeMass; ///< Mass returned to loop header.
|
||||
@ -962,26 +955,11 @@ public:
|
||||
Float Scale;
|
||||
|
||||
LoopData(LoopData *Parent, const BlockNode &Header)
|
||||
: Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
|
||||
template <class It1, class It2>
|
||||
LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
|
||||
It2 LastOther)
|
||||
: Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
|
||||
NumHeaders = Nodes.size();
|
||||
Nodes.insert(Nodes.end(), FirstOther, LastOther);
|
||||
}
|
||||
bool isHeader(const BlockNode &Node) const {
|
||||
if (isIrreducible())
|
||||
return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
|
||||
Node);
|
||||
return Node == Nodes[0];
|
||||
}
|
||||
: Parent(Parent), IsPackaged(false), Nodes(1, Header) {}
|
||||
bool isHeader(const BlockNode &Node) const { return Node == Nodes[0]; }
|
||||
BlockNode getHeader() const { return Nodes[0]; }
|
||||
bool isIrreducible() const { return NumHeaders > 1; }
|
||||
|
||||
NodeList::const_iterator members_begin() const {
|
||||
return Nodes.begin() + NumHeaders;
|
||||
}
|
||||
NodeList::const_iterator members_begin() const { return Nodes.begin() + 1; }
|
||||
NodeList::const_iterator members_end() const { return Nodes.end(); }
|
||||
iterator_range<NodeList::const_iterator> members() const {
|
||||
return make_range(members_begin(), members_end());
|
||||
@ -997,17 +975,9 @@ public:
|
||||
WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
|
||||
|
||||
bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
|
||||
bool isDoubleLoopHeader() const {
|
||||
return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
|
||||
Loop->Parent->isHeader(Node);
|
||||
}
|
||||
|
||||
LoopData *getContainingLoop() const {
|
||||
if (!isLoopHeader())
|
||||
return Loop;
|
||||
if (!isDoubleLoopHeader())
|
||||
return Loop->Parent;
|
||||
return Loop->Parent->Parent;
|
||||
return isLoopHeader() ? Loop->Parent : Loop;
|
||||
}
|
||||
|
||||
/// \brief Resolve a node to its representative.
|
||||
@ -1041,22 +1011,12 @@ public:
|
||||
/// Get appropriate mass for Node. If Node is a loop-header (whose loop
|
||||
/// has been packaged), returns the mass of its pseudo-node. If it's a
|
||||
/// node inside a packaged loop, it returns the loop's mass.
|
||||
BlockMass &getMass() {
|
||||
if (!isAPackage())
|
||||
return Mass;
|
||||
if (!isADoublePackage())
|
||||
return Loop->Mass;
|
||||
return Loop->Parent->Mass;
|
||||
}
|
||||
BlockMass &getMass() { return isAPackage() ? Loop->Mass : Mass; }
|
||||
|
||||
/// \brief Has ContainingLoop been packaged up?
|
||||
bool isPackaged() const { return getResolvedNode() != Node; }
|
||||
/// \brief Has Loop been packaged up?
|
||||
bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
|
||||
/// \brief Has Loop been packaged up twice?
|
||||
bool isADoublePackage() const {
|
||||
return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Unscaled probability weight.
|
||||
@ -1133,9 +1093,7 @@ public:
|
||||
///
|
||||
/// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
|
||||
/// successor edge.
|
||||
///
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
|
||||
void addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
|
||||
Distribution &Dist);
|
||||
|
||||
/// \brief Add an edge to the distribution.
|
||||
@ -1143,9 +1101,7 @@ public:
|
||||
/// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
|
||||
/// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
|
||||
/// every edge should be a local edge (since all the loops are packaged up).
|
||||
///
|
||||
/// \return \c true unless aborted due to an irreducible backedge.
|
||||
bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
|
||||
void addToDist(Distribution &Dist, const LoopData *OuterLoop,
|
||||
const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
|
||||
|
||||
LoopData &getLoopPackage(const BlockNode &Head) {
|
||||
@ -1154,25 +1110,6 @@ public:
|
||||
return *Working[Head.Index].Loop;
|
||||
}
|
||||
|
||||
/// \brief Analyze irreducible SCCs.
|
||||
///
|
||||
/// Separate irreducible SCCs from \c G, which is an explict graph of \c
|
||||
/// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
|
||||
/// Insert them into \a Loops before \c Insert.
|
||||
///
|
||||
/// \return the \c LoopData nodes representing the irreducible SCCs.
|
||||
iterator_range<std::list<LoopData>::iterator>
|
||||
analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
|
||||
std::list<LoopData>::iterator Insert);
|
||||
|
||||
/// \brief Update a loop after packaging irreducible SCCs inside of it.
|
||||
///
|
||||
/// Update \c OuterLoop. Before finding irreducible control flow, it was
|
||||
/// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
|
||||
/// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
|
||||
/// up need to be removed from \a OuterLoop::Nodes.
|
||||
void updateLoopWithIrreducible(LoopData &OuterLoop);
|
||||
|
||||
/// \brief Distribute mass according to a distribution.
|
||||
///
|
||||
/// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
|
||||
@ -1201,7 +1138,6 @@ public:
|
||||
void clear();
|
||||
|
||||
virtual std::string getBlockName(const BlockNode &Node) const;
|
||||
std::string getLoopName(const LoopData &Loop) const;
|
||||
|
||||
virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
|
||||
void dump() const { print(dbgs()); }
|
||||
@ -1261,106 +1197,6 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
assert(BB && "Unexpected nullptr");
|
||||
return BB->getName().str();
|
||||
}
|
||||
|
||||
/// \brief Graph of irreducible control flow.
|
||||
///
|
||||
/// This graph is used for determining the SCCs in a loop (or top-level
|
||||
/// function) that has irreducible control flow.
|
||||
///
|
||||
/// During the block frequency algorithm, the local graphs are defined in a
|
||||
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
|
||||
/// graphs for most edges, but getting others from \a LoopData::ExitMap. The
|
||||
/// latter only has successor information.
|
||||
///
|
||||
/// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
|
||||
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
|
||||
/// and it explicitly lists predecessors and successors. The initialization
|
||||
/// that relies on \c MachineBasicBlock is defined in the header.
|
||||
struct IrreducibleGraph {
|
||||
typedef BlockFrequencyInfoImplBase BFIBase;
|
||||
|
||||
BFIBase &BFI;
|
||||
|
||||
typedef BFIBase::BlockNode BlockNode;
|
||||
struct IrrNode {
|
||||
BlockNode Node;
|
||||
unsigned NumIn;
|
||||
std::deque<const IrrNode *> Edges;
|
||||
IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
|
||||
|
||||
typedef typename std::deque<const IrrNode *>::const_iterator iterator;
|
||||
iterator pred_begin() const { return Edges.begin(); }
|
||||
iterator succ_begin() const { return Edges.begin() + NumIn; }
|
||||
iterator pred_end() const { return succ_begin(); }
|
||||
iterator succ_end() const { return Edges.end(); }
|
||||
};
|
||||
BlockNode Start;
|
||||
const IrrNode *StartIrr;
|
||||
std::vector<IrrNode> Nodes;
|
||||
SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
|
||||
|
||||
/// \brief Construct an explicit graph containing irreducible control flow.
|
||||
///
|
||||
/// Construct an explicit graph of the control flow in \c OuterLoop (or the
|
||||
/// top-level function, if \c OuterLoop is \c nullptr). Uses \c
|
||||
/// addBlockEdges to add block successors that have not been packaged into
|
||||
/// loops.
|
||||
///
|
||||
/// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
|
||||
/// user of this.
|
||||
template <class BlockEdgesAdder>
|
||||
IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges)
|
||||
: BFI(BFI), StartIrr(nullptr) {
|
||||
initialize(OuterLoop, addBlockEdges);
|
||||
}
|
||||
|
||||
template <class BlockEdgesAdder>
|
||||
void initialize(const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges);
|
||||
void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
|
||||
void addNodesInFunction();
|
||||
void addNode(const BlockNode &Node) {
|
||||
Nodes.emplace_back(Node);
|
||||
BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
|
||||
}
|
||||
void indexNodes();
|
||||
template <class BlockEdgesAdder>
|
||||
void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges);
|
||||
void addEdge(IrrNode &Irr, const BlockNode &Succ,
|
||||
const BFIBase::LoopData *OuterLoop);
|
||||
};
|
||||
template <class BlockEdgesAdder>
|
||||
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges) {
|
||||
if (OuterLoop) {
|
||||
addNodesInLoop(*OuterLoop);
|
||||
for (auto N : OuterLoop->Nodes)
|
||||
addEdges(N, OuterLoop, addBlockEdges);
|
||||
} else {
|
||||
addNodesInFunction();
|
||||
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
|
||||
addEdges(Index, OuterLoop, addBlockEdges);
|
||||
}
|
||||
StartIrr = Lookup[Start.Index];
|
||||
}
|
||||
template <class BlockEdgesAdder>
|
||||
void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges) {
|
||||
auto L = Lookup.find(Node.Index);
|
||||
if (L == Lookup.end())
|
||||
return;
|
||||
IrrNode &Irr = *L->second;
|
||||
const auto &Working = BFI.Working[Node.Index];
|
||||
|
||||
if (Working.isAPackage())
|
||||
for (const auto &I : Working.Loop->Exits)
|
||||
addEdge(Irr, I.first, OuterLoop);
|
||||
else
|
||||
addBlockEdges(*this, Irr, OuterLoop);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Shared implementation for block frequency analysis.
|
||||
@ -1369,22 +1205,6 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
|
||||
/// blocks.
|
||||
///
|
||||
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
|
||||
/// which is called the header. A given loop, L, can have sub-loops, which are
|
||||
/// loops within the subgraph of L that exclude its header. (A "trivial" SCC
|
||||
/// consists of a single block that does not have a self-edge.)
|
||||
///
|
||||
/// In addition to loops, this algorithm has limited support for irreducible
|
||||
/// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
|
||||
/// discovered on they fly, and modelled as loops with multiple headers.
|
||||
///
|
||||
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
|
||||
/// nodes that are targets of a backedge within it (excluding backedges within
|
||||
/// true sub-loops). Block frequency calculations act as if a block is
|
||||
/// inserted that intercepts all the edges to the headers. All backedges and
|
||||
/// entries point to this block. Its successors are the headers, which split
|
||||
/// the frequency evenly.
|
||||
///
|
||||
/// This algorithm leverages BlockMass and UnsignedFloat to maintain precision,
|
||||
/// separates mass distribution from loop scaling, and dithers to eliminate
|
||||
/// probability mass loss.
|
||||
@ -1408,7 +1228,7 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
/// All other stages make use of this ordering. Save a lookup from BlockT
|
||||
/// to BlockNode (the index into RPOT) in Nodes.
|
||||
///
|
||||
/// 1. Loop initialization (\a initializeLoops()).
|
||||
/// 1. Loop indexing (\a initializeLoops()).
|
||||
///
|
||||
/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
|
||||
/// the algorithm. In particular, store the immediate members of each loop
|
||||
@ -1419,9 +1239,11 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
/// For each loop (bottom-up), distribute mass through the DAG resulting
|
||||
/// from ignoring backedges and treating sub-loops as a single pseudo-node.
|
||||
/// Track the backedge mass distributed to the loop header, and use it to
|
||||
/// calculate the loop scale (number of loop iterations). Immediate
|
||||
/// members that represent sub-loops will already have been visited and
|
||||
/// packaged into a pseudo-node.
|
||||
/// calculate the loop scale (number of loop iterations).
|
||||
///
|
||||
/// Visiting loops bottom-up is a post-order traversal of loop headers.
|
||||
/// For each loop, immediate members that represent sub-loops will already
|
||||
/// have been visited and packaged into a pseudo-node.
|
||||
///
|
||||
/// Distributing mass in a loop is a reverse-post-order traversal through
|
||||
/// the loop. Start by assigning full mass to the Loop header. For each
|
||||
@ -1438,11 +1260,6 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
/// The weight, the successor, and its category are stored in \a
|
||||
/// Distribution. There can be multiple edges to each successor.
|
||||
///
|
||||
/// - If there's a backedge to a non-header, there's an irreducible SCC.
|
||||
/// The usual flow is temporarily aborted. \a
|
||||
/// computeIrreducibleMass() finds the irreducible SCCs within the
|
||||
/// loop, packages them up, and restarts the flow.
|
||||
///
|
||||
/// - Normalize the distribution: scale weights down so that their sum
|
||||
/// is 32-bits, and coalesce multiple edges to the same node.
|
||||
///
|
||||
@ -1457,62 +1274,39 @@ void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
/// loops in the function. This uses the same algorithm as distributing
|
||||
/// mass in a loop, except that there are no exit or backedge edges.
|
||||
///
|
||||
/// 4. Unpackage loops (\a unwrapLoops()).
|
||||
/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
|
||||
///
|
||||
/// Initialize each block's frequency to a floating point representation of
|
||||
/// its mass.
|
||||
/// Initialize the frequency to a floating point representation of its
|
||||
/// mass.
|
||||
///
|
||||
/// Visit loops top-down, scaling the frequencies of its immediate members
|
||||
/// by the loop's pseudo-node's frequency.
|
||||
///
|
||||
/// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
|
||||
/// Visit loops top-down (reverse post-order), scaling the loop header's
|
||||
/// frequency by its psuedo-node's mass and loop scale. Keep track of the
|
||||
/// minimum and maximum final frequencies.
|
||||
///
|
||||
/// Using the min and max frequencies as a guide, translate floating point
|
||||
/// frequencies to an appropriate range in uint64_t.
|
||||
///
|
||||
/// It has some known flaws.
|
||||
///
|
||||
/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
|
||||
/// BlockFrequency's 64-bit integer precision.
|
||||
///
|
||||
/// - The model of irreducible control flow is a rough approximation.
|
||||
/// - Irreducible control flow isn't modelled correctly. In particular,
|
||||
/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
|
||||
/// result is that irreducible SCCs will under-scaled. No mass is lost,
|
||||
/// but the computed branch weights for the loop pseudo-node will be
|
||||
/// incorrect.
|
||||
///
|
||||
/// Modelling irreducible control flow exactly involves setting up and
|
||||
/// solving a group of infinite geometric series. Such precision is
|
||||
/// unlikely to be worthwhile, since most of our algorithms give up on
|
||||
/// irreducible control flow anyway.
|
||||
///
|
||||
/// Nevertheless, we might find that we need to get closer. Here's a sort
|
||||
/// of TODO list for the model with diminishing returns, to be completed as
|
||||
/// necessary.
|
||||
/// Nevertheless, we might find that we need to get closer. If
|
||||
/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
|
||||
/// (and/or the function as a whole), we can find the SCCs, compute an
|
||||
/// approximate exit frequency for the SCC as a whole, and scale up
|
||||
/// accordingly.
|
||||
///
|
||||
/// - The headers for the \a LoopData representing an irreducible SCC
|
||||
/// include non-entry blocks. When these extra blocks exist, they
|
||||
/// indicate a self-contained irreducible sub-SCC. We could treat them
|
||||
/// as sub-loops, rather than arbitrarily shoving the problematic
|
||||
/// blocks into the headers of the main irreducible SCC.
|
||||
///
|
||||
/// - Backedge frequencies are assumed to be evenly split between the
|
||||
/// headers of a given irreducible SCC. Instead, we could track the
|
||||
/// backedge mass separately for each header, and adjust their relative
|
||||
/// frequencies.
|
||||
///
|
||||
/// - Entry frequencies are assumed to be evenly split between the
|
||||
/// headers of a given irreducible SCC, which is the only option if we
|
||||
/// need to compute mass in the SCC before its parent loop. Instead,
|
||||
/// we could partially compute mass in the parent loop, and stop when
|
||||
/// we get to the SCC. Here, we have the correct ratio of entry
|
||||
/// masses, which we can use to adjust their relative frequencies.
|
||||
/// Compute mass in the SCC, and then continue propagation in the
|
||||
/// parent.
|
||||
///
|
||||
/// - We can propagate mass iteratively through the SCC, for some fixed
|
||||
/// number of iterations. Each iteration starts by assigning the entry
|
||||
/// blocks their backedge mass from the prior iteration. The final
|
||||
/// mass for each block (and each exit, and the total backedge mass
|
||||
/// used for computing loop scale) is the sum of all iterations.
|
||||
/// (Running this until fixed point would "solve" the geometric
|
||||
/// series by simulation.)
|
||||
/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
|
||||
/// BlockFrequency's 64-bit integer precision.
|
||||
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
|
||||
typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
|
||||
@ -1567,9 +1361,7 @@ template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
///
|
||||
/// In the context of distributing mass through \c OuterLoop, divide the mass
|
||||
/// currently assigned to \c Node between its successors.
|
||||
///
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
|
||||
void propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
|
||||
|
||||
/// \brief Compute mass in a particular loop.
|
||||
///
|
||||
@ -1578,51 +1370,20 @@ template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
/// that have not been packaged into sub-loops.
|
||||
///
|
||||
/// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool computeMassInLoop(LoopData &Loop);
|
||||
void computeMassInLoop(LoopData &Loop);
|
||||
|
||||
/// \brief Try to compute mass in the top-level function.
|
||||
/// \brief Compute mass in all loops.
|
||||
///
|
||||
/// For each loop bottom-up, call \a computeMassInLoop().
|
||||
void computeMassInLoops();
|
||||
|
||||
/// \brief Compute mass in the top-level function.
|
||||
///
|
||||
/// Assign mass to the entry block, and then for each block in reverse
|
||||
/// post-order, distribute mass to its successors. Skips nodes that have
|
||||
/// been packaged into loops.
|
||||
///
|
||||
/// \pre \a computeMassInLoops() has been called.
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool tryToComputeMassInFunction();
|
||||
|
||||
/// \brief Compute mass in (and package up) irreducible SCCs.
|
||||
///
|
||||
/// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
|
||||
/// of \c Insert), and call \a computeMassInLoop() on each of them.
|
||||
///
|
||||
/// If \c OuterLoop is \c nullptr, it refers to the top-level function.
|
||||
///
|
||||
/// \pre \a computeMassInLoop() has been called for each subloop of \c
|
||||
/// OuterLoop.
|
||||
/// \pre \c Insert points at the the last loop successfully processed by \a
|
||||
/// computeMassInLoop().
|
||||
/// \pre \c OuterLoop has irreducible SCCs.
|
||||
void computeIrreducibleMass(LoopData *OuterLoop,
|
||||
std::list<LoopData>::iterator Insert);
|
||||
|
||||
/// \brief Compute mass in all loops.
|
||||
///
|
||||
/// For each loop bottom-up, call \a computeMassInLoop().
|
||||
///
|
||||
/// \a computeMassInLoop() aborts (and returns \c false) on loops that
|
||||
/// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
|
||||
/// re-enter \a computeMassInLoop().
|
||||
///
|
||||
/// \post \a computeMassInLoop() has returned \c true for every loop.
|
||||
void computeMassInLoops();
|
||||
|
||||
/// \brief Compute mass in the top-level function.
|
||||
///
|
||||
/// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
|
||||
/// compute mass in the top-level function.
|
||||
///
|
||||
/// \post \a tryToComputeMassInFunction() has returned \c true.
|
||||
void computeMassInFunction();
|
||||
|
||||
std::string getBlockName(const BlockNode &Node) const override {
|
||||
@ -1769,50 +1530,27 @@ template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
|
||||
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
|
||||
// Visit loops with the deepest first, and the top-level loops last.
|
||||
for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
|
||||
if (computeMassInLoop(*L))
|
||||
continue;
|
||||
auto Next = std::next(L);
|
||||
computeIrreducibleMass(&*L, L.base());
|
||||
L = std::prev(Next);
|
||||
if (computeMassInLoop(*L))
|
||||
continue;
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
}
|
||||
for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L)
|
||||
computeMassInLoop(*L);
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
|
||||
void BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
|
||||
// Compute mass in loop.
|
||||
DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
|
||||
DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(Loop.getHeader())
|
||||
<< "\n");
|
||||
|
||||
if (Loop.isIrreducible()) {
|
||||
BlockMass Remaining = BlockMass::getFull();
|
||||
for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
|
||||
auto &Mass = Working[Loop.Nodes[H].Index].getMass();
|
||||
Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
|
||||
Remaining -= Mass;
|
||||
}
|
||||
for (const BlockNode &M : Loop.Nodes)
|
||||
if (!propagateMassToSuccessors(&Loop, M))
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
} else {
|
||||
Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
|
||||
if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
|
||||
llvm_unreachable("irreducible control flow to loop header!?");
|
||||
for (const BlockNode &M : Loop.members())
|
||||
if (!propagateMassToSuccessors(&Loop, M))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
}
|
||||
Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
|
||||
propagateMassToSuccessors(&Loop, Loop.getHeader());
|
||||
|
||||
for (const BlockNode &M : Loop.members())
|
||||
propagateMassToSuccessors(&Loop, M);
|
||||
|
||||
computeLoopScale(Loop);
|
||||
packageLoop(Loop);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
|
||||
// Compute mass in function.
|
||||
DEBUG(dbgs() << "compute-mass-in-function\n");
|
||||
assert(!Working.empty() && "no blocks in function");
|
||||
@ -1825,48 +1563,12 @@ bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
|
||||
if (Working[Node.Index].isPackaged())
|
||||
continue;
|
||||
|
||||
if (!propagateMassToSuccessors(nullptr, Node))
|
||||
return false;
|
||||
propagateMassToSuccessors(nullptr, Node);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
|
||||
if (tryToComputeMassInFunction())
|
||||
return;
|
||||
computeIrreducibleMass(nullptr, Loops.begin());
|
||||
if (tryToComputeMassInFunction())
|
||||
return;
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
|
||||
LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
|
||||
DEBUG(dbgs() << "analyze-irreducible-in-";
|
||||
if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
|
||||
else dbgs() << "function\n");
|
||||
|
||||
using bfi_detail::IrreducibleGraph;
|
||||
auto addBlockEdges = [&](IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
|
||||
const LoopData *OuterLoop) {
|
||||
const BlockT *BB = RPOT[Irr.Node.Index];
|
||||
for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
|
||||
I != E; ++I)
|
||||
G.addEdge(Irr, getNode(*I), OuterLoop);
|
||||
};
|
||||
IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
|
||||
|
||||
for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
|
||||
computeMassInLoop(L);
|
||||
|
||||
if (!OuterLoop)
|
||||
return;
|
||||
updateLoopWithIrreducible(*OuterLoop);
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
bool
|
||||
void
|
||||
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
|
||||
const BlockNode &Node) {
|
||||
DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
|
||||
@ -1874,25 +1576,20 @@ BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
|
||||
Distribution Dist;
|
||||
if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
|
||||
assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
|
||||
if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
addLoopSuccessorsToDist(OuterLoop, *Loop, Dist);
|
||||
} else {
|
||||
const BlockT *BB = getBlock(Node);
|
||||
for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
|
||||
SI != SE; ++SI)
|
||||
// Do not dereference SI, or getEdgeWeight() is linear in the number of
|
||||
// successors.
|
||||
if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
|
||||
BPI->getEdgeWeight(BB, SI)))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
addToDist(Dist, OuterLoop, Node, getNode(*SI),
|
||||
BPI->getEdgeWeight(BB, SI));
|
||||
}
|
||||
|
||||
// Distribute mass to successors, saving exit and backedge data in the
|
||||
// loop header.
|
||||
distributeMass(Node, OuterLoop, Dist);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
|
@ -17,7 +17,6 @@
|
||||
#include <deque>
|
||||
|
||||
using namespace llvm;
|
||||
using namespace llvm::bfi_detail;
|
||||
|
||||
#define DEBUG_TYPE "block-freq"
|
||||
|
||||
@ -569,7 +568,7 @@ static void cleanup(BlockFrequencyInfoImplBase &BFI) {
|
||||
BFI.Freqs = std::move(SavedFreqs);
|
||||
}
|
||||
|
||||
bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
|
||||
void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
|
||||
const LoopData *OuterLoop,
|
||||
const BlockNode &Pred,
|
||||
const BlockNode &Succ,
|
||||
@ -599,48 +598,34 @@ bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
|
||||
if (isLoopHeader(Resolved)) {
|
||||
DEBUG(debugSuccessor("backedge"));
|
||||
Dist.addBackedge(OuterLoop->getHeader(), Weight);
|
||||
return true;
|
||||
return;
|
||||
}
|
||||
|
||||
if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
|
||||
DEBUG(debugSuccessor(" exit "));
|
||||
Dist.addExit(Resolved, Weight);
|
||||
return true;
|
||||
return;
|
||||
}
|
||||
|
||||
if (Resolved < Pred) {
|
||||
if (!isLoopHeader(Pred)) {
|
||||
// If OuterLoop is an irreducible loop, we can't actually handle this.
|
||||
assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
|
||||
"unhandled irreducible control flow");
|
||||
|
||||
// Irreducible backedge. Abort.
|
||||
DEBUG(debugSuccessor("abort!!!"));
|
||||
return false;
|
||||
}
|
||||
|
||||
// If "Pred" is a loop header, then this isn't really a backedge; rather,
|
||||
// OuterLoop must be irreducible. These false backedges can come only from
|
||||
// secondary loop headers.
|
||||
assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
|
||||
"unhandled irreducible control flow");
|
||||
// Irreducible backedge. Skip.
|
||||
DEBUG(debugSuccessor(" skip "));
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG(debugSuccessor(" local "));
|
||||
Dist.addLocal(Resolved, Weight);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
|
||||
void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
|
||||
const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
|
||||
// Copy the exit map into Dist.
|
||||
for (const auto &I : Loop.Exits)
|
||||
if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
|
||||
I.second.getMass()))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, I.second.getMass());
|
||||
|
||||
return true;
|
||||
// We don't need this map any more. Clear it to prevent quadratic memory
|
||||
// usage in deeply nested loops with irreducible control flow.
|
||||
Loop.Exits.clear();
|
||||
}
|
||||
|
||||
/// \brief Get the maximum allowed loop scale.
|
||||
@ -652,7 +637,8 @@ static Float getMaxLoopScale() { return Float(1, 12); }
|
||||
/// \brief Compute the loop scale for a loop.
|
||||
void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
|
||||
// Compute loop scale.
|
||||
DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
|
||||
DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(Loop.getHeader())
|
||||
<< "\n");
|
||||
|
||||
// LoopScale == 1 / ExitMass
|
||||
// ExitMass == HeadMass - BackedgeMass
|
||||
@ -673,15 +659,12 @@ void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
|
||||
|
||||
/// \brief Package up a loop.
|
||||
void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
|
||||
DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
|
||||
|
||||
// Clear the subloop exits to prevent quadratic memory usage.
|
||||
for (const BlockNode &M : Loop.Nodes) {
|
||||
if (auto *Loop = Working[M.Index].getPackagedLoop())
|
||||
Loop->Exits.clear();
|
||||
DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
|
||||
}
|
||||
DEBUG(dbgs() << "packaging-loop: " << getBlockName(Loop.getHeader()) << "\n");
|
||||
Loop.IsPackaged = true;
|
||||
DEBUG(for (const BlockNode &M
|
||||
: Loop.members()) {
|
||||
dbgs() << " - node: " << getBlockName(M.Index) << "\n";
|
||||
});
|
||||
}
|
||||
|
||||
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
|
||||
@ -762,7 +745,7 @@ static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
|
||||
/// Visits all the members of a loop, adjusting their BlockData according to
|
||||
/// the loop's pseudo-node.
|
||||
static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
|
||||
DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
|
||||
DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Loop.getHeader())
|
||||
<< ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
|
||||
<< "\n");
|
||||
Loop.Scale *= Loop.Mass.toFloat();
|
||||
@ -774,7 +757,7 @@ static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
|
||||
// final head scale will be used for updated the rest of the members.
|
||||
for (const BlockNode &N : Loop.Nodes) {
|
||||
const auto &Working = BFI.Working[N.Index];
|
||||
Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
|
||||
Float &F = Working.isAPackage() ? BFI.getLoopPackage(N).Scale
|
||||
: BFI.Freqs[N.Index].Floating;
|
||||
Float New = Loop.Scale * F;
|
||||
DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
|
||||
@ -830,10 +813,6 @@ std::string
|
||||
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
|
||||
return std::string();
|
||||
}
|
||||
std::string
|
||||
BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
|
||||
return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
|
||||
}
|
||||
|
||||
raw_ostream &
|
||||
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
|
||||
@ -849,172 +828,3 @@ BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
|
||||
|
||||
return OS << Block / Entry;
|
||||
}
|
||||
|
||||
void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
|
||||
Start = OuterLoop.getHeader();
|
||||
Nodes.reserve(OuterLoop.Nodes.size());
|
||||
for (auto N : OuterLoop.Nodes)
|
||||
addNode(N);
|
||||
indexNodes();
|
||||
}
|
||||
void IrreducibleGraph::addNodesInFunction() {
|
||||
Start = 0;
|
||||
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
|
||||
if (!BFI.Working[Index].isPackaged())
|
||||
addNode(Index);
|
||||
indexNodes();
|
||||
}
|
||||
void IrreducibleGraph::indexNodes() {
|
||||
for (auto &I : Nodes)
|
||||
Lookup[I.Node.Index] = &I;
|
||||
}
|
||||
void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
|
||||
const BFIBase::LoopData *OuterLoop) {
|
||||
if (OuterLoop && OuterLoop->isHeader(Succ))
|
||||
return;
|
||||
auto L = Lookup.find(Succ.Index);
|
||||
if (L == Lookup.end())
|
||||
return;
|
||||
IrrNode &SuccIrr = *L->second;
|
||||
Irr.Edges.push_back(&SuccIrr);
|
||||
SuccIrr.Edges.push_front(&Irr);
|
||||
++SuccIrr.NumIn;
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
template <> struct GraphTraits<IrreducibleGraph> {
|
||||
typedef bfi_detail::IrreducibleGraph GraphT;
|
||||
|
||||
typedef const typename GraphT::IrrNode NodeType;
|
||||
typedef typename GraphT::IrrNode::iterator ChildIteratorType;
|
||||
|
||||
static const NodeType *getEntryNode(const GraphT &G) {
|
||||
return G.StartIrr;
|
||||
}
|
||||
static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
|
||||
static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
|
||||
};
|
||||
}
|
||||
|
||||
/// \brief Find extra irreducible headers.
|
||||
///
|
||||
/// Find entry blocks and other blocks with backedges, which exist when \c G
|
||||
/// contains irreducible sub-SCCs.
|
||||
static void findIrreducibleHeaders(
|
||||
const BlockFrequencyInfoImplBase &BFI,
|
||||
const IrreducibleGraph &G,
|
||||
const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
|
||||
LoopData::NodeList &Headers, LoopData::NodeList &Others) {
|
||||
// Map from nodes in the SCC to whether it's an entry block.
|
||||
SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
|
||||
|
||||
// InSCC also acts the set of nodes in the graph. Seed it.
|
||||
for (const auto *I : SCC)
|
||||
InSCC[I] = false;
|
||||
|
||||
for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
|
||||
auto &Irr = *I->first;
|
||||
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
|
||||
if (InSCC.count(P))
|
||||
continue;
|
||||
|
||||
// This is an entry block.
|
||||
I->second = true;
|
||||
Headers.push_back(Irr.Node);
|
||||
DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(Headers.size() >= 2 && "Should be irreducible");
|
||||
if (Headers.size() == InSCC.size()) {
|
||||
// Every block is a header.
|
||||
std::sort(Headers.begin(), Headers.end());
|
||||
return;
|
||||
}
|
||||
|
||||
// Look for extra headers from irreducible sub-SCCs.
|
||||
for (const auto &I : InSCC) {
|
||||
// Entry blocks are already headers.
|
||||
if (I.second)
|
||||
continue;
|
||||
|
||||
auto &Irr = *I.first;
|
||||
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
|
||||
// Skip forward edges.
|
||||
if (P->Node < Irr.Node)
|
||||
continue;
|
||||
|
||||
// Skip predecessors from entry blocks. These can have inverted
|
||||
// ordering.
|
||||
if (InSCC.lookup(P))
|
||||
continue;
|
||||
|
||||
// Store the extra header.
|
||||
Headers.push_back(Irr.Node);
|
||||
DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n");
|
||||
break;
|
||||
}
|
||||
if (Headers.back() == Irr.Node)
|
||||
// Added this as a header.
|
||||
continue;
|
||||
|
||||
// This is not a header.
|
||||
Others.push_back(Irr.Node);
|
||||
DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
|
||||
}
|
||||
std::sort(Headers.begin(), Headers.end());
|
||||
std::sort(Others.begin(), Others.end());
|
||||
}
|
||||
|
||||
static void createIrreducibleLoop(
|
||||
BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
|
||||
LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
|
||||
const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
|
||||
// Translate the SCC into RPO.
|
||||
DEBUG(dbgs() << " - found-scc\n");
|
||||
|
||||
LoopData::NodeList Headers;
|
||||
LoopData::NodeList Others;
|
||||
findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
|
||||
|
||||
auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
|
||||
Headers.end(), Others.begin(), Others.end());
|
||||
|
||||
// Update loop hierarchy.
|
||||
for (const auto &N : Loop->Nodes)
|
||||
if (BFI.Working[N.Index].isLoopHeader())
|
||||
BFI.Working[N.Index].Loop->Parent = &*Loop;
|
||||
else
|
||||
BFI.Working[N.Index].Loop = &*Loop;
|
||||
}
|
||||
|
||||
iterator_range<std::list<LoopData>::iterator>
|
||||
BlockFrequencyInfoImplBase::analyzeIrreducible(
|
||||
const IrreducibleGraph &G, LoopData *OuterLoop,
|
||||
std::list<LoopData>::iterator Insert) {
|
||||
assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
|
||||
auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
|
||||
|
||||
for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
|
||||
if (I->size() < 2)
|
||||
continue;
|
||||
|
||||
// Translate the SCC into RPO.
|
||||
createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
|
||||
}
|
||||
|
||||
if (OuterLoop)
|
||||
return make_range(std::next(Prev), Insert);
|
||||
return make_range(Loops.begin(), Insert);
|
||||
}
|
||||
|
||||
void
|
||||
BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
|
||||
OuterLoop.Exits.clear();
|
||||
OuterLoop.BackedgeMass = BlockMass::getEmpty();
|
||||
auto O = OuterLoop.Nodes.begin() + 1;
|
||||
for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
|
||||
if (!Working[I->Index].isPackaged())
|
||||
*O++ = *I;
|
||||
OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
|
||||
}
|
||||
|
@ -34,28 +34,16 @@ return:
|
||||
!0 = metadata !{metadata !"branch_weights", i32 1, i32 7}
|
||||
!1 = metadata !{metadata !"branch_weights", i32 3, i32 4}
|
||||
|
||||
; Irreducible control flow
|
||||
; ========================
|
||||
; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
|
||||
; into a loop very well. The frequencies assigned to blocks in the loop are
|
||||
; predictable (and not absurd), but also not correct and therefore not worth
|
||||
; testing.
|
||||
;
|
||||
; LoopInfo defines a loop as a non-trivial SCC dominated by a single block,
|
||||
; called the header. A given loop, L, can have sub-loops, which are loops
|
||||
; within the subgraph of L that excludes the header.
|
||||
; There are two testcases below.
|
||||
;
|
||||
; In addition to loops, -block-freq has limited support for irreducible SCCs,
|
||||
; which are SCCs with multiple entry blocks. Irreducible SCCs are discovered
|
||||
; on they fly, and modelled as loops with multiple headers.
|
||||
;
|
||||
; The headers of irreducible sub-SCCs consist of its entry blocks and all nodes
|
||||
; that are targets of a backedge within it (excluding backedges within true
|
||||
; sub-loops).
|
||||
;
|
||||
; -block-freq is currently designed to act like a block is inserted that
|
||||
; intercepts all the edges to the headers. All backedges and entries point to
|
||||
; this block. Its successors are the headers, which split the frequency
|
||||
; evenly.
|
||||
;
|
||||
; There are a number of testcases below. Only the first two have detailed
|
||||
; explanations.
|
||||
; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
|
||||
; granularity of a single check. If/when this behaviour is fixed, we'll know
|
||||
; about it, and the test should be updated.
|
||||
;
|
||||
; Testcase #1
|
||||
; ===========
|
||||
@ -89,31 +77,36 @@ return:
|
||||
; loop as a whole is 1/4, so the loop scale should be 4. Summing c1 and c2
|
||||
; gives 28/7, or 4.0, which is nice confirmation of the math above.
|
||||
;
|
||||
; -block-freq currently treats the two nodes as equals.
|
||||
define void @multientry(i1 %x) {
|
||||
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
|
||||
; returns 3/4 and 13/16, respectively. LoopInfo ignores edges between loops
|
||||
; (and doesn't see any loops here at all), and -block-freq ignores the
|
||||
; irreducible edge from c2 to c1.
|
||||
;
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
|
||||
; CHECK-NEXT: block-frequency-info: multientry
|
||||
entry:
|
||||
define void @multientry(i1 %x) {
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
entry:
|
||||
br i1 %x, label %c1, label %c2, !prof !2
|
||||
|
||||
; This is like a single-line XFAIL (see above).
|
||||
; CHECK-NEXT: c1:
|
||||
; CHECK-NOT: float = 2.142857{{[0-9]*}},
|
||||
c1:
|
||||
; CHECK-NEXT: c1: float = 2.0,
|
||||
; The "correct" answer is: float = 2.142857{{[0-9]*}},
|
||||
br i1 %x, label %c2, label %exit, !prof !2
|
||||
|
||||
; This is like a single-line XFAIL (see above).
|
||||
; CHECK-NEXT: c2:
|
||||
; CHECK-NOT: float = 1.857142{{[0-9]*}},
|
||||
c2:
|
||||
; CHECK-NEXT: c2: float = 2.0,
|
||||
; The "correct" answer is: float = 1.857142{{[0-9]*}},
|
||||
br i1 %x, label %c1, label %exit, !prof !2
|
||||
|
||||
exit:
|
||||
; We still shouldn't lose any frequency.
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
|
||||
; Testcase #2
|
||||
; ===========
|
||||
;
|
||||
@ -131,291 +124,73 @@ exit:
|
||||
; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined. This
|
||||
; infinite series sums to 1.
|
||||
;
|
||||
; Since the currently algorithm *always* assumes entry blocks are equal,
|
||||
; -block-freq gets the right answers here.
|
||||
define void @crossloops(i2 %x) {
|
||||
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
|
||||
; returns 1/2 and 3/4, respectively. LoopInfo ignores edges between loops (and
|
||||
; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
|
||||
; edge from c2 to c1.
|
||||
;
|
||||
; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
|
||||
; single check. If/when this behaviour is fixed, we'll know about it, and the
|
||||
; test should be updated.
|
||||
;
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
|
||||
; CHECK-NEXT: block-frequency-info: crossloops
|
||||
entry:
|
||||
define void @crossloops(i2 %x) {
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
entry:
|
||||
switch i2 %x, label %exit [ i2 1, label %c1
|
||||
i2 2, label %c2 ], !prof !3
|
||||
|
||||
; This is like a single-line XFAIL (see above).
|
||||
; CHECK-NEXT: c1:
|
||||
; CHECK-NOT: float = 1.0,
|
||||
c1:
|
||||
; CHECK-NEXT: c1: float = 1.0,
|
||||
switch i2 %x, label %exit [ i2 1, label %c1
|
||||
i2 2, label %c2 ], !prof !3
|
||||
|
||||
; This is like a single-line XFAIL (see above).
|
||||
; CHECK-NEXT: c2:
|
||||
; CHECK-NOT: float = 1.0,
|
||||
c2:
|
||||
; CHECK-NEXT: c2: float = 1.0,
|
||||
switch i2 %x, label %exit [ i2 1, label %c1
|
||||
i2 2, label %c2 ], !prof !3
|
||||
|
||||
exit:
|
||||
; We still shouldn't lose any frequency.
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}
|
||||
|
||||
; A true loop with irreducible control flow inside.
|
||||
define void @loop_around_irreducible(i1 %x) {
|
||||
; A reducible loop with irreducible control flow inside should still have
|
||||
; correct exit frequency.
|
||||
;
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_around_irreducible':
|
||||
; CHECK-NEXT: block-frequency-info: loop_around_irreducible
|
||||
entry:
|
||||
define void @loop_around_irreducible(i1 %x) {
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
; CHECK-NEXT: loop: float = [[HEAD:[0-9.]+]], int = [[HEADINT:[0-9]+]]
|
||||
loop:
|
||||
; CHECK-NEXT: loop: float = 4.0, int = [[HEAD:[0-9]+]]
|
||||
br i1 %x, label %left, label %right, !prof !4
|
||||
br i1 %x, label %left, label %right
|
||||
|
||||
; CHECK-NEXT: left:
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 8.0,
|
||||
br i1 %x, label %right, label %loop.end, !prof !5
|
||||
br i1 %x, label %right, label %loop.end
|
||||
|
||||
; CHECK-NEXT: right:
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 8.0,
|
||||
br i1 %x, label %left, label %loop.end, !prof !5
|
||||
br i1 %x, label %left, label %loop.end
|
||||
|
||||
; CHECK-NEXT: loop.end: float = [[HEAD]], int = [[HEADINT]]
|
||||
loop.end:
|
||||
; CHECK-NEXT: loop.end: float = 4.0, int = [[HEAD]]
|
||||
br i1 %x, label %loop, label %exit, !prof !5
|
||||
br i1 %x, label %loop, label %exit
|
||||
|
||||
; CHECK-NEXT: float = 1.0, int = [[ENTRY]]
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!4 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!5 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
|
||||
; Two unrelated irreducible SCCs.
|
||||
define void @two_sccs(i1 %x) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'two_sccs':
|
||||
; CHECK-NEXT: block-frequency-info: two_sccs
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br i1 %x, label %a, label %b, !prof !6
|
||||
|
||||
a:
|
||||
; CHECK-NEXT: a: float = 0.75,
|
||||
br i1 %x, label %a.left, label %a.right, !prof !7
|
||||
|
||||
a.left:
|
||||
; CHECK-NEXT: a.left: float = 1.5,
|
||||
br i1 %x, label %a.right, label %exit, !prof !6
|
||||
|
||||
a.right:
|
||||
; CHECK-NEXT: a.right: float = 1.5,
|
||||
br i1 %x, label %a.left, label %exit, !prof !6
|
||||
|
||||
b:
|
||||
; CHECK-NEXT: b: float = 0.25,
|
||||
br i1 %x, label %b.left, label %b.right, !prof !7
|
||||
|
||||
b.left:
|
||||
; CHECK-NEXT: b.left: float = 0.625,
|
||||
br i1 %x, label %b.right, label %exit, !prof !8
|
||||
|
||||
b.right:
|
||||
; CHECK-NEXT: b.right: float = 0.625,
|
||||
br i1 %x, label %b.left, label %exit, !prof !8
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!6 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
!7 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!8 = metadata !{metadata !"branch_weights", i32 4, i32 1}
|
||||
|
||||
; A true loop inside irreducible control flow.
|
||||
define void @loop_inside_irreducible(i1 %x) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_inside_irreducible':
|
||||
; CHECK-NEXT: block-frequency-info: loop_inside_irreducible
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br i1 %x, label %left, label %right, !prof !9
|
||||
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 2.0,
|
||||
br i1 %x, label %right, label %exit, !prof !10
|
||||
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 2.0, int = [[RIGHT:[0-9]+]]
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
; CHECK-NEXT: loop: float = 6.0,
|
||||
br i1 %x, label %loop, label %right.end, !prof !11
|
||||
|
||||
right.end:
|
||||
; CHECK-NEXT: right.end: float = 2.0, int = [[RIGHT]]
|
||||
br i1 %x, label %left, label %exit, !prof !10
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!9 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!10 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
!11 = metadata !{metadata !"branch_weights", i32 2, i32 1}
|
||||
|
||||
; Irreducible control flow in a branch that's in a true loop.
|
||||
define void @loop_around_branch_with_irreducible(i1 %x) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_around_branch_with_irreducible':
|
||||
; CHECK-NEXT: block-frequency-info: loop_around_branch_with_irreducible
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
; CHECK-NEXT: loop: float = 2.0, int = [[LOOP:[0-9]+]]
|
||||
br i1 %x, label %normal, label %irreducible.entry, !prof !12
|
||||
|
||||
normal:
|
||||
; CHECK-NEXT: normal: float = 1.5,
|
||||
br label %loop.end
|
||||
|
||||
irreducible.entry:
|
||||
; CHECK-NEXT: irreducible.entry: float = 0.5, int = [[IRREDUCIBLE:[0-9]+]]
|
||||
br i1 %x, label %left, label %right, !prof !13
|
||||
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 1.0,
|
||||
br i1 %x, label %right, label %irreducible.exit, !prof !12
|
||||
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 1.0,
|
||||
br i1 %x, label %left, label %irreducible.exit, !prof !12
|
||||
|
||||
irreducible.exit:
|
||||
; CHECK-NEXT: irreducible.exit: float = 0.5, int = [[IRREDUCIBLE]]
|
||||
br label %loop.end
|
||||
|
||||
loop.end:
|
||||
; CHECK-NEXT: loop.end: float = 2.0, int = [[LOOP]]
|
||||
br i1 %x, label %loop, label %exit, !prof !13
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!12 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
!13 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
|
||||
; Irreducible control flow between two true loops.
|
||||
define void @loop_around_branch_with_irreducible_around_loop(i1 %x) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_around_branch_with_irreducible_around_loop':
|
||||
; CHECK-NEXT: block-frequency-info: loop_around_branch_with_irreducible_around_loop
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
; CHECK-NEXT: loop: float = 3.0, int = [[LOOP:[0-9]+]]
|
||||
br i1 %x, label %normal, label %irreducible, !prof !14
|
||||
|
||||
normal:
|
||||
; CHECK-NEXT: normal: float = 2.0,
|
||||
br label %loop.end
|
||||
|
||||
irreducible:
|
||||
; CHECK-NEXT: irreducible: float = 1.0,
|
||||
br i1 %x, label %left, label %right, !prof !15
|
||||
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 2.0,
|
||||
br i1 %x, label %right, label %loop.end, !prof !16
|
||||
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 2.0, int = [[RIGHT:[0-9]+]]
|
||||
br label %right.loop
|
||||
|
||||
right.loop:
|
||||
; CHECK-NEXT: right.loop: float = 10.0,
|
||||
br i1 %x, label %right.loop, label %right.end, !prof !17
|
||||
|
||||
right.end:
|
||||
; CHECK-NEXT: right.end: float = 2.0, int = [[RIGHT]]
|
||||
br i1 %x, label %left, label %loop.end, !prof !16
|
||||
|
||||
loop.end:
|
||||
; CHECK-NEXT: loop.end: float = 3.0, int = [[LOOP]]
|
||||
br i1 %x, label %loop, label %exit, !prof !14
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!14 = metadata !{metadata !"branch_weights", i32 2, i32 1}
|
||||
!15 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!16 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
!17 = metadata !{metadata !"branch_weights", i32 4, i32 1}
|
||||
|
||||
; An irreducible SCC with a non-header.
|
||||
define void @nonheader(i1 %x) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'nonheader':
|
||||
; CHECK-NEXT: block-frequency-info: nonheader
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br i1 %x, label %left, label %right, !prof !18
|
||||
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 1.0,
|
||||
br i1 %x, label %bottom, label %exit, !prof !19
|
||||
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 1.0,
|
||||
br i1 %x, label %bottom, label %exit, !prof !20
|
||||
|
||||
bottom:
|
||||
; CHECK-NEXT: bottom: float = 1.0,
|
||||
br i1 %x, label %left, label %right, !prof !18
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!18 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!19 = metadata !{metadata !"branch_weights", i32 1, i32 3}
|
||||
!20 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||||
|
||||
; An irreducible SCC with an irreducible sub-SCC. In the current version of
|
||||
; -block-freq, this means an extra header.
|
||||
;
|
||||
; This testcases uses non-trivial branch weights. The CHECK statements here
|
||||
; will start to fail if we change -block-freq to be more accurate. Currently,
|
||||
; we expect left, right and top to be treated as equal headers.
|
||||
define void @nonentry_header(i1 %x, i2 %y) {
|
||||
; CHECK-LABEL: Printing analysis {{.*}} for function 'nonentry_header':
|
||||
; CHECK-NEXT: block-frequency-info: nonentry_header
|
||||
entry:
|
||||
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||||
br i1 %x, label %left, label %right, !prof !21
|
||||
|
||||
left:
|
||||
; CHECK-NEXT: left: float = 3.0,
|
||||
br i1 %x, label %top, label %bottom, !prof !22
|
||||
|
||||
right:
|
||||
; CHECK-NEXT: right: float = 3.0,
|
||||
br i1 %x, label %top, label %bottom, !prof !22
|
||||
|
||||
top:
|
||||
; CHECK-NEXT: top: float = 3.0,
|
||||
switch i2 %y, label %exit [ i2 0, label %left
|
||||
i2 1, label %right
|
||||
i2 2, label %bottom ], !prof !23
|
||||
|
||||
bottom:
|
||||
; CHECK-NEXT: bottom: float = 4.5,
|
||||
br label %top
|
||||
|
||||
exit:
|
||||
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||||
ret void
|
||||
}
|
||||
!21 = metadata !{metadata !"branch_weights", i32 2, i32 1}
|
||||
!22 = metadata !{metadata !"branch_weights", i32 1, i32 1}
|
||||
!23 = metadata !{metadata !"branch_weights", i32 8, i32 1, i32 3, i32 12}
|
||||
|
Loading…
Reference in New Issue
Block a user