teach zext optimization how to deal with truncs that don't come from

the zext dest type.  This allows us to handle test52/53 in cast.ll,
and allows llvm-gcc to generate much better code for PR4216 in -m64
mode:

_test_bitfield:                                             ## @test_bitfield
	orl	$32962, %edi
	movl	%edi, %eax
	andl	$-25350, %eax
	ret

This also fixes a bug handling vector extends, ensuring that the
mask produced is a vector constant, not an integer constant.

llvm-svn: 93127
This commit is contained in:
Chris Lattner 2010-01-10 20:25:54 +00:00
parent 56e327711b
commit ca53de1ab7
2 changed files with 37 additions and 13 deletions

View File

@ -192,7 +192,9 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
return I->getOperand(0);
// Otherwise, must be the same type of cast, so just reinsert a new one.
Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
Opc == Instruction::SExt);
break;
case Instruction::Select: {
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
@ -597,6 +599,10 @@ static bool CanEvaluateZExtd(Value *V, const Type *Ty, const TargetData *TD) {
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
case Instruction::SExt: // zext(sext(x)) -> sext(x).
case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
return true;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
@ -608,9 +614,6 @@ static bool CanEvaluateZExtd(Value *V, const Type *Ty, const TargetData *TD) {
CanEvaluateZExtd(I->getOperand(1), Ty, TD);
//case Instruction::LShr:
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
case Instruction::SExt: // zext(sext(x)) -> sext(x).
return true;
case Instruction::Select:
return CanEvaluateZExtd(I->getOperand(1), Ty, TD) &&
@ -671,7 +674,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(CI.getContext(),
Constant *C = ConstantInt::get(Res->getType(),
APInt::getLowBitsSet(DestBitSize, SrcBitSize));
return BinaryOperator::CreateAnd(Res, C);
}
@ -810,23 +813,20 @@ static bool CanEvaluateSExtd(Value *V, const Type *Ty, TargetData *TD) {
//case Instruction::LShr: TODO
//case Instruction::Trunc: TODO
case Instruction::SExt:
case Instruction::ZExt: {
// sext(sext(x)) -> sext(x)
// sext(zext(x)) -> zext(x)
case Instruction::SExt: // sext(sext(x)) -> sext(x)
case Instruction::ZExt: // sext(zext(x)) -> zext(x)
return true;
}
case Instruction::Select:
return CanEvaluateSExtd(I->getOperand(1), Ty, TD) &&
CanEvaluateSExtd(I->getOperand(2), Ty, TD);
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty, TD)) return false;
}
return true;
}
default:

View File

@ -496,6 +496,30 @@ define i64 @test51(i64 %A, i1 %cond) {
; CHECK-NEXT: %sext = shl i64 %E, 32
; CHECK-NEXT: %F = ashr i64 %sext, 32
; CHECK-NEXT: ret i64 %F
}
define i32 @test52(i64 %A) {
%B = trunc i64 %A to i16
%C = or i16 %B, -32574
%D = and i16 %C, -25350
%E = zext i16 %D to i32
ret i32 %E
; CHECK: @test52
; CHECK-NEXT: %B = trunc i64 %A to i32
; CHECK-NEXT: %C = or i32 %B, 32962
; CHECK-NEXT: %D = and i32 %C, 40186
; CHECK-NEXT: ret i32 %D
}
define i64 @test53(i32 %A) {
%B = trunc i32 %A to i16
%C = or i16 %B, -32574
%D = and i16 %C, -25350
%E = zext i16 %D to i64
ret i64 %E
; CHECK: @test53
; CHECK-NEXT: %B = zext i32 %A to i64
; CHECK-NEXT: %C = or i64 %B, 32962
; CHECK-NEXT: %D = and i64 %C, 40186
; CHECK-NEXT: ret i64 %D
}