mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-18 09:46:57 +00:00
Separate out the constant bonus from the size reduction metrics. Rework
a few loops accordingly. Should be no functional change. This is a step for more accurate cost/benefit analysis of devirt/inlining bonuses. llvm-svn: 124275
This commit is contained in:
parent
a4abd1fc4b
commit
cb32adbd3f
@ -96,10 +96,9 @@ namespace llvm {
|
||||
public:
|
||||
unsigned ConstantWeight;
|
||||
unsigned AllocaWeight;
|
||||
unsigned ConstantBonus;
|
||||
|
||||
ArgInfo(unsigned CWeight, unsigned AWeight, unsigned CBonus)
|
||||
: ConstantWeight(CWeight), AllocaWeight(AWeight), ConstantBonus(CBonus)
|
||||
ArgInfo(unsigned CWeight, unsigned AWeight)
|
||||
: ConstantWeight(CWeight), AllocaWeight(AWeight)
|
||||
{}
|
||||
};
|
||||
|
||||
@ -125,6 +124,7 @@ namespace llvm {
|
||||
// the ValueMap will update itself when this happens.
|
||||
ValueMap<const Function *, FunctionInfo> CachedFunctionInfo;
|
||||
|
||||
unsigned CountBonusForConstant(Value *V);
|
||||
public:
|
||||
|
||||
/// getInlineCost - The heuristic used to determine if we should inline the
|
||||
|
@ -142,64 +142,6 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
|
||||
NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
|
||||
}
|
||||
|
||||
// CountBonusForConstant - Figure out an approximation for how much per-call
|
||||
// performance boost we can expect if the specified value is constant.
|
||||
unsigned CodeMetrics::CountBonusForConstant(Value *V) {
|
||||
unsigned Bonus = 0;
|
||||
bool indirectCallBonus = false;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
||||
User *U = *UI;
|
||||
if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
if (CI->getCalledValue() == V)
|
||||
indirectCallBonus = true;
|
||||
}
|
||||
else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
if (II->getCalledValue() == V)
|
||||
indirectCallBonus = true;
|
||||
}
|
||||
// FIXME: Eliminating conditional branches and switches should
|
||||
// also yield a per-call performance boost.
|
||||
else {
|
||||
// Figure out the bonuses that wll accrue due to simple constant
|
||||
// propagation.
|
||||
Instruction &Inst = cast<Instruction>(*U);
|
||||
|
||||
// We can't constant propagate instructions which have effects or
|
||||
// read memory.
|
||||
//
|
||||
// FIXME: It would be nice to capture the fact that a load from a
|
||||
// pointer-to-constant-global is actually a *really* good thing to zap.
|
||||
// Unfortunately, we don't know the pointer that may get propagated here,
|
||||
// so we can't make this decision.
|
||||
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
||||
isa<AllocaInst>(Inst))
|
||||
continue;
|
||||
|
||||
bool AllOperandsConstant = true;
|
||||
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
||||
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
||||
AllOperandsConstant = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (AllOperandsConstant)
|
||||
Bonus += CountBonusForConstant(&Inst);
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: The only reason we're applying the bonus once is while it's great
|
||||
// to devirtualize calls the magnitude of the bonus x number of call sites
|
||||
// can lead to a huge code explosion when we prefer to inline 1000 instruction
|
||||
// functions that have 10 call sites. This should be made a function of the
|
||||
// estimated inline penalty/benefit + the indirect call bonus.
|
||||
if (indirectCallBonus) Bonus += InlineConstants::IndirectCallBonus;
|
||||
|
||||
return Bonus;
|
||||
}
|
||||
|
||||
|
||||
// CountCodeReductionForConstant - Figure out an approximation for how many
|
||||
// instructions will be constant folded if the specified value is constant.
|
||||
//
|
||||
@ -309,17 +251,14 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
|
||||
ArgumentWeights.reserve(F->arg_size());
|
||||
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
||||
ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
|
||||
Metrics.CountCodeReductionForAlloca(I),
|
||||
Metrics.CountBonusForConstant(I)));
|
||||
Metrics.CountCodeReductionForAlloca(I)));
|
||||
}
|
||||
|
||||
/// NeverInline - returns true if the function should never be inlined into
|
||||
/// any caller
|
||||
bool InlineCostAnalyzer::FunctionInfo::NeverInline()
|
||||
{
|
||||
bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
|
||||
return (Metrics.callsSetJmp || Metrics.isRecursive ||
|
||||
Metrics.containsIndirectBr);
|
||||
|
||||
}
|
||||
// getSpecializationBonus - The heuristic used to determine the per-call
|
||||
// performance boost for using a specialization of Callee with argument
|
||||
@ -343,8 +282,14 @@ int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
|
||||
if (CalleeFI->Metrics.NumBlocks == 0)
|
||||
CalleeFI->analyzeFunction(Callee);
|
||||
|
||||
for (unsigned i = 0, s = SpecializedArgNos.size(); i < s; ++i )
|
||||
Bonus += CalleeFI->ArgumentWeights[SpecializedArgNos[i]].ConstantBonus;
|
||||
unsigned ArgNo = 0;
|
||||
unsigned i = 0;
|
||||
for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
|
||||
I != E; ++I, ++ArgNo)
|
||||
if (ArgNo == SpecializedArgNos[i]) {
|
||||
++i;
|
||||
Bonus += CountBonusForConstant(I);
|
||||
}
|
||||
|
||||
// Calls usually take a long time, so they make the specialization gain
|
||||
// smaller.
|
||||
@ -353,6 +298,62 @@ int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
|
||||
return Bonus;
|
||||
}
|
||||
|
||||
// CountBonusForConstant - Figure out an approximation for how much per-call
|
||||
// performance boost we can expect if the specified value is constant.
|
||||
unsigned InlineCostAnalyzer::CountBonusForConstant(Value *V) {
|
||||
unsigned Bonus = 0;
|
||||
bool indirectCallBonus = false;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
||||
User *U = *UI;
|
||||
if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
if (CI->getCalledValue() == V)
|
||||
indirectCallBonus = true;
|
||||
}
|
||||
else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
if (II->getCalledValue() == V)
|
||||
indirectCallBonus = true;
|
||||
}
|
||||
// FIXME: Eliminating conditional branches and switches should
|
||||
// also yield a per-call performance boost.
|
||||
else {
|
||||
// Figure out the bonuses that wll accrue due to simple constant
|
||||
// propagation.
|
||||
Instruction &Inst = cast<Instruction>(*U);
|
||||
|
||||
// We can't constant propagate instructions which have effects or
|
||||
// read memory.
|
||||
//
|
||||
// FIXME: It would be nice to capture the fact that a load from a
|
||||
// pointer-to-constant-global is actually a *really* good thing to zap.
|
||||
// Unfortunately, we don't know the pointer that may get propagated here,
|
||||
// so we can't make this decision.
|
||||
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
||||
isa<AllocaInst>(Inst))
|
||||
continue;
|
||||
|
||||
bool AllOperandsConstant = true;
|
||||
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
||||
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
||||
AllOperandsConstant = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (AllOperandsConstant)
|
||||
Bonus += CountBonusForConstant(&Inst);
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: The only reason we're applying the bonus once is while it's great
|
||||
// to devirtualize calls the magnitude of the bonus x number of call sites
|
||||
// can lead to a huge code explosion when we prefer to inline 1000 instruction
|
||||
// functions that have 10 call sites. This should be made a function of the
|
||||
// estimated inline penalty/benefit + the indirect call bonus.
|
||||
if (indirectCallBonus) Bonus += InlineConstants::IndirectCallBonus;
|
||||
|
||||
return Bonus;
|
||||
}
|
||||
|
||||
// getInlineCost - The heuristic used to determine if we should inline the
|
||||
// function call or not.
|
||||
@ -427,31 +428,33 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
||||
// passed into the function.
|
||||
//
|
||||
unsigned ArgNo = 0;
|
||||
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
||||
I != E; ++I, ++ArgNo) {
|
||||
// Each argument passed in has a cost at both the caller and the callee
|
||||
// sides. Measurements show that each argument costs about the same as an
|
||||
// instruction.
|
||||
InlineCost -= InlineConstants::InstrCost;
|
||||
CallSite::arg_iterator I = CS.arg_begin();
|
||||
for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
|
||||
FI != FE; ++I, ++FI, ++ArgNo) {
|
||||
|
||||
// If an alloca is passed in, inlining this function is likely to allow
|
||||
// significant future optimization possibilities (like scalar promotion, and
|
||||
// scalarization), so encourage the inlining of the function.
|
||||
//
|
||||
if (isa<AllocaInst>(I)) {
|
||||
if (ArgNo < CalleeFI->ArgumentWeights.size())
|
||||
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
|
||||
if (isa<AllocaInst>(I))
|
||||
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
|
||||
|
||||
// If this is a constant being passed into the function, use the argument
|
||||
// weights calculated for the callee to determine how much will be folded
|
||||
// away with this information.
|
||||
} else if (isa<Constant>(I)) {
|
||||
if (ArgNo < CalleeFI->ArgumentWeights.size())
|
||||
InlineCost -= (CalleeFI->ArgumentWeights[ArgNo].ConstantWeight +
|
||||
CalleeFI->ArgumentWeights[ArgNo].ConstantBonus);
|
||||
// If this is a constant being passed into the function, use the argument
|
||||
// weights calculated for the callee to determine how much will be folded
|
||||
// away with this information.
|
||||
else if (isa<Constant>(I)) {
|
||||
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;
|
||||
|
||||
// Compute any constant bonus due to inlining we want to give here.
|
||||
InlineCost -= CountBonusForConstant(FI);
|
||||
}
|
||||
}
|
||||
|
||||
// Each argument passed in has a cost at both the caller and the callee
|
||||
// sides. Measurements show that each argument costs about the same as an
|
||||
// instruction.
|
||||
InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
|
||||
|
||||
// If there is only one call of the function, and it has internal linkage,
|
||||
// make it almost guaranteed to be inlined.
|
||||
//
|
||||
|
Loading…
x
Reference in New Issue
Block a user