Get rid of the Pass+Context magic.

llvm-svn: 76702
This commit is contained in:
Owen Anderson 2009-07-22 00:24:57 +00:00
parent 48dffde0d7
commit cc287b28c9
120 changed files with 835 additions and 786 deletions

View File

@ -856,7 +856,7 @@ the loop again and exiting the loop. Any future code is emitted in the
NamedValues.erase(VarName);
// for expr always returns 0.0.
return TheFunction->getContext()->getNullValue(Type::DoubleTy);
return TheFunction->getContext().getNullValue(Type::DoubleTy);
}
</pre>
</div>

View File

@ -1570,7 +1570,7 @@ Value *ForExprAST::Codegen() {
// for expr always returns 0.0.
return TheFunction->getContext()->getNullValue(Type::DoubleTy);
return TheFunction->getContext().getNullValue(Type::DoubleTy);
}
Function *PrototypeAST::Codegen() {

View File

@ -1858,7 +1858,7 @@ Value *ForExprAST::Codegen() {
// for expr always returns 0.0.
return TheFunction->getContext()->getNullValue(Type::DoubleTy);
return TheFunction->getContext().getNullValue(Type::DoubleTy);
}
Value *VarExprAST::Codegen() {

View File

@ -856,7 +856,7 @@ Value *ForExprAST::Codegen() {
// for expr always returns 0.0.
return TheFunction->getContext()->getNullValue(Type::DoubleTy);
return TheFunction->getContext().getNullValue(Type::DoubleTy);
}
Value *VarExprAST::Codegen() {

View File

@ -29,13 +29,13 @@ namespace llvm {
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
Constant *ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
const TargetData *TD = 0);
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *ConstantFoldConstantExpression(ConstantExpr *CE, LLVMContext *Context,
Constant *ConstantFoldConstantExpression(ConstantExpr *CE, LLVMContext &Context,
const TargetData *TD = 0);
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@ -46,7 +46,7 @@ Constant *ConstantFoldConstantExpression(ConstantExpr *CE, LLVMContext *Context,
///
Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant*const * Ops, unsigned NumOps,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD = 0);
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
@ -55,7 +55,7 @@ Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
///
Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops, unsigned NumOps,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD = 0);
@ -63,7 +63,7 @@ Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE,
LLVMContext *Context);
LLVMContext &Context);
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.

View File

@ -37,7 +37,6 @@ public:
// Initialization and finalization hooks.
virtual bool doInitialization(Loop *L, LPPassManager &LPM) {
Context = L->getHeader()->getContext();
return false;
}

View File

@ -368,7 +368,7 @@ namespace llvm {
static char ID; // Pass identification, replacement for typeid
ScalarEvolution();
LLVMContext *getContext() const { return Context; }
LLVMContext &getContext() const { return F->getContext(); }
/// isSCEVable - Test if values of the given type are analyzable within
/// the SCEV framework. This primarily includes integer types, and it

View File

@ -38,8 +38,8 @@ namespace llvm {
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
explicit SCEVExpander(ScalarEvolution &se)
: SE(se), Builder(*se.getContext(),
TargetFolder(se.TD, *se.getContext())) {}
: SE(se), Builder(se.getContext(),
TargetFolder(se.TD, se.getContext())) {}
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
@ -61,7 +61,7 @@ namespace llvm {
}
private:
LLVMContext *getContext() const { return SE.getContext(); }
LLVMContext &getContext() const { return SE.getContext(); }
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.

View File

@ -65,13 +65,13 @@ namespace llvm {
Value *FindInsertedValue(Value *V,
const unsigned *idx_begin,
const unsigned *idx_end,
LLVMContext *Context,
LLVMContext &Context,
Instruction *InsertBefore = 0);
/// This is a convenience wrapper for finding values indexed by a single index
/// only.
inline Value *FindInsertedValue(Value *V, const unsigned Idx,
LLVMContext *Context,
LLVMContext &Context,
Instruction *InsertBefore = 0) {
const unsigned Idxs[1] = { Idx };
return FindInsertedValue(V, &Idxs[0], &Idxs[1], Context, InsertBefore);

View File

@ -88,7 +88,7 @@ private:
public:
/// getContext - Get the context in which this basic block lives,
/// or null if it is not currently attached to a function.
LLVMContext *getContext() const;
LLVMContext &getContext() const;
/// Instruction iterators...
typedef InstListType::iterator iterator;

View File

@ -38,7 +38,6 @@ struct CallGraphSCCPass : public Pass {
/// doInitialization - This method is called before the SCC's of the program
/// has been processed, allowing the pass to do initialization as necessary.
virtual bool doInitialization(CallGraph &CG) {
Context = &CG.getModule().getContext();
return false;
}

View File

@ -142,19 +142,19 @@ class CCState {
const TargetMachine &TM;
const TargetRegisterInfo &TRI;
SmallVector<CCValAssign, 16> &Locs;
LLVMContext *Context;
LLVMContext &Context;
unsigned StackOffset;
SmallVector<uint32_t, 16> UsedRegs;
public:
CCState(unsigned CC, bool isVarArg, const TargetMachine &TM,
SmallVector<CCValAssign, 16> &locs, LLVMContext *C);
SmallVector<CCValAssign, 16> &locs, LLVMContext &C);
void addLoc(const CCValAssign &V) {
Locs.push_back(V);
}
LLVMContext *getContext() const { return Context; }
LLVMContext &getContext() const { return Context; }
const TargetMachine &getTarget() const { return TM; }
unsigned getCallingConv() const { return CallingConv; }
bool isVarArg() const { return IsVarArg; }

View File

@ -60,7 +60,6 @@ protected:
const TargetData &TD;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
LLVMContext *Context;
public:
/// startNewBlock - Set the current block to which generated machine

View File

@ -129,7 +129,7 @@ public:
/// getContext - Return a pointer to the LLVMContext associated with this
/// function, or NULL if this function is not bound to a context yet.
LLVMContext *getContext() const;
LLVMContext &getContext() const;
/// isVarArg - Return true if this function takes a variable number of
/// arguments.

View File

@ -645,8 +645,7 @@ public:
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const std::string &NameStr = "" ///< Name of the instruction
) : CmpInst(InsertBefore->getParent()->getContext()->
makeCmpResultType(LHS->getType()),
) : CmpInst(InsertBefore->getContext().makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
InsertBefore) {
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
@ -667,7 +666,7 @@ public:
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const std::string &NameStr = "" ///< Name of the instruction
) : CmpInst(InsertAtEnd.getContext()->makeCmpResultType(LHS->getType()),
) : CmpInst(InsertAtEnd.getContext().makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
@ -821,8 +820,7 @@ public:
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const std::string &NameStr = "" ///< Name of the instruction
) : CmpInst(InsertBefore->getParent()->getContext()->
makeCmpResultType(LHS->getType()),
) : CmpInst(InsertBefore->getContext().makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
InsertBefore) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
@ -841,7 +839,7 @@ public:
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const std::string &NameStr = "" ///< Name of the instruction
) : CmpInst(InsertAtEnd.getContext()->makeCmpResultType(LHS->getType()),
) : CmpInst(InsertAtEnd.getContext().makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&

View File

@ -48,7 +48,6 @@ class ImmutablePass;
class PMStack;
class AnalysisResolver;
class PMDataManager;
class LLVMContext;
// AnalysisID - Use the PassInfo to identify a pass...
typedef const PassInfo* AnalysisID;
@ -78,9 +77,6 @@ class Pass {
void operator=(const Pass&); // DO NOT IMPLEMENT
Pass(const Pass &); // DO NOT IMPLEMENT
protected:
LLVMContext *Context;
public:
explicit Pass(intptr_t pid) : Resolver(0), PassID(pid) {
assert(pid && "pid cannot be 0");
@ -281,11 +277,8 @@ public:
/// doInitialization - Virtual method overridden by subclasses to do
/// any necessary per-module initialization.
///
virtual bool doInitialization(Module &M) {
Context = &M.getContext();
return false;
}
virtual bool doInitialization(Module &M) { return false; }
/// runOnFunction - Virtual method overriden by subclasses to do the
/// per-function processing of the pass.
///
@ -336,10 +329,7 @@ public:
/// doInitialization - Virtual method overridden by subclasses to do
/// any necessary per-module initialization.
///
virtual bool doInitialization(Module &M) {
Context = &M.getContext();
return false;
}
virtual bool doInitialization(Module &M) { return false; }
/// doInitialization - Virtual method overridden by BasicBlockPass subclasses
/// to do any necessary per-function initialization.

View File

@ -51,22 +51,22 @@ public:
IRBuilder(LLVMContext &C) : Context(C), Folder(C) { ClearInsertionPoint(); }
explicit IRBuilder(BasicBlock *TheBB, const T& F)
: Context(*TheBB->getParent()->getContext()), Folder(F) {
: Context(TheBB->getContext()), Folder(F) {
SetInsertPoint(TheBB);
}
explicit IRBuilder(BasicBlock *TheBB)
: Context(*TheBB->getParent()->getContext()), Folder(Context) {
: Context(TheBB->getContext()), Folder(Context) {
SetInsertPoint(TheBB);
}
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F)
: Context(*TheBB->getParent()->getContext()), Folder(F) {
: Context(TheBB->getContext()), Folder(F) {
SetInsertPoint(TheBB, IP);
}
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP)
: Context(*TheBB->getParent()->getContext()), Folder(Context) {
: Context(TheBB->getContext()), Folder(Context) {
SetInsertPoint(TheBB, IP);
}

View File

@ -35,7 +35,7 @@ class TargetFolder {
/// Fold - Fold the constant using target specific information.
Constant *Fold(Constant *C) const {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
if (Constant *CF = ConstantFoldConstantExpression(CE, &Context, TD))
if (Constant *CF = ConstantFoldConstantExpression(CE, Context, TD))
return CF;
return C;
}

View File

@ -40,7 +40,7 @@ bool isAllocaPromotable(const AllocaInst *AI);
///
void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominatorTree &DT, DominanceFrontier &DF,
LLVMContext *Context,
LLVMContext &Context,
AliasSetTracker *AST = 0);
} // End llvm namespace

View File

@ -23,7 +23,7 @@ namespace llvm {
class LLVMContext;
typedef DenseMap<const Value *, Value *> ValueMapTy;
Value *MapValue(const Value *V, ValueMapTy &VM, LLVMContext *Context);
Value *MapValue(const Value *V, ValueMapTy &VM, LLVMContext &Context);
void RemapInstruction(Instruction *I, ValueMapTy &VM);
} // End llvm namespace

View File

@ -40,6 +40,7 @@ typedef StringMapEntry<Value*> ValueName;
class raw_ostream;
class AssemblyAnnotationWriter;
class ValueHandleBase;
class LLVMContext;
//===----------------------------------------------------------------------===//
// Value Class
@ -101,6 +102,9 @@ public:
///
inline const Type *getType() const { return VTy; }
/// All values hold a context through their type.
LLVMContext &getContext() const;
// All values can potentially be named...
inline bool hasName() const { return Name != 0; }
ValueName *getValueName() const { return Name; }

View File

@ -309,7 +309,7 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
AliasAnalysis::AliasResult
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
Context = &V1->getType()->getContext();
LLVMContext &Context = V1->getType()->getContext();
// Strip off any constant expression casts if they exist
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
@ -395,13 +395,13 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
// the base pointers.
while (isGEP(GEP1->getOperand(0)) &&
GEP1->getOperand(1) ==
Context->getNullValue(GEP1->getOperand(1)->getType()))
Context.getNullValue(GEP1->getOperand(1)->getType()))
GEP1 = cast<User>(GEP1->getOperand(0));
const Value *BasePtr1 = GEP1->getOperand(0);
while (isGEP(GEP2->getOperand(0)) &&
GEP2->getOperand(1) ==
Context->getNullValue(GEP2->getOperand(1)->getType()))
Context.getNullValue(GEP2->getOperand(1)->getType()))
GEP2 = cast<User>(GEP2->getOperand(0));
const Value *BasePtr2 = GEP2->getOperand(0);
@ -481,7 +481,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
for (unsigned i = 0; i != GEPOperands.size(); ++i)
if (!isa<ConstantInt>(GEPOperands[i]))
GEPOperands[i] =
Context->getNullValue(GEPOperands[i]->getType());
Context.getNullValue(GEPOperands[i]->getType());
int64_t Offset =
getTargetData().getIndexedOffset(BasePtr->getType(),
&GEPOperands[0],
@ -499,16 +499,16 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
// This function is used to determine if the indices of two GEP instructions are
// equal. V1 and V2 are the indices.
static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext *Context) {
static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
if (V1->getType() == V2->getType())
return V1 == V2;
if (Constant *C1 = dyn_cast<Constant>(V1))
if (Constant *C2 = dyn_cast<Constant>(V2)) {
// Sign extend the constants to long types, if necessary
if (C1->getType() != Type::Int64Ty)
C1 = Context->getConstantExprSExt(C1, Type::Int64Ty);
C1 = Context.getConstantExprSExt(C1, Type::Int64Ty);
if (C2->getType() != Type::Int64Ty)
C2 = Context->getConstantExprSExt(C2, Type::Int64Ty);
C2 = Context.getConstantExprSExt(C2, Type::Int64Ty);
return C1 == C2;
}
return false;
@ -529,7 +529,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
Context = &GEPPointerTy->getContext();
LLVMContext &Context = GEPPointerTy->getContext();
// Find the (possibly empty) initial sequence of equal values... which are not
// necessarily constants.
@ -604,9 +604,9 @@ BasicAliasAnalysis::CheckGEPInstructions(
if (G1OC->getType() != G2OC->getType()) {
// Sign extend both operands to long.
if (G1OC->getType() != Type::Int64Ty)
G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty);
G1OC = Context.getConstantExprSExt(G1OC, Type::Int64Ty);
if (G2OC->getType() != Type::Int64Ty)
G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty);
G2OC = Context.getConstantExprSExt(G2OC, Type::Int64Ty);
GEP1Ops[FirstConstantOper] = G1OC;
GEP2Ops[FirstConstantOper] = G2OC;
}
@ -693,7 +693,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
// TargetData::getIndexedOffset.
for (i = 0; i != MaxOperands; ++i)
if (!isa<ConstantInt>(GEP1Ops[i]))
GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType());
GEP1Ops[i] = Context.getNullValue(GEP1Ops[i]->getType());
// Okay, now get the offset. This is the relative offset for the full
// instruction.
const TargetData &TD = getTargetData();
@ -738,7 +738,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
const Type *ZeroIdxTy = GEPPointerTy;
for (unsigned i = 0; i != FirstConstantOper; ++i) {
if (!isa<StructType>(ZeroIdxTy))
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty);
GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Type::Int32Ty);
if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
@ -753,7 +753,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
// If they are equal, use a zero index...
if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
if (!isa<ConstantInt>(Op1))
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType());
GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Op1->getType());
// Otherwise, just keep the constants we have.
} else {
if (Op1) {
@ -780,10 +780,10 @@ BasicAliasAnalysis::CheckGEPInstructions(
//
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
GEP1Ops[i] =
Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
Context.getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
GEP1Ops[i] =
Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
Context.getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
}
}
@ -798,7 +798,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
return MayAlias; // Be conservative with out-of-range accesses
}
} else { // Conservatively assume the minimum value for this index
GEP2Ops[i] = Context->getNullValue(Op2->getType());
GEP2Ops[i] = Context.getNullValue(Op2->getType());
}
}
}

View File

@ -95,7 +95,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const TargetData *TD,
LLVMContext *Context){
LLVMContext &Context){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
@ -113,7 +113,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
return Context.getConstantInt(Op0->getType(), Offs1-Offs2);
}
}
@ -124,7 +124,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
const Type *ResultTy,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
@ -151,14 +151,14 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
(Value**)Ops+1, NumOps-1);
Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
return Context->getConstantExprIntToPtr(C, ResultTy);
Constant *C = Context.getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
return Context.getConstantExprIntToPtr(C, ResultTy);
}
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// targetdata. Return 0 if unfoldable.
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
const TargetData &TD, LLVMContext *Context) {
const TargetData &TD, LLVMContext &Context) {
// If this is a bitcast from constant vector -> vector, fold it.
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
@ -184,24 +184,24 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
if (DstEltTy->isFloatingPoint()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
const Type *DestIVTy = Context->getVectorType(
Context->getIntegerType(FPWidth), NumDstElt);
const Type *DestIVTy = Context.getVectorType(
Context.getIntegerType(FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD, Context);
if (!C) return 0;
// Finally, VMCore can handle this now that #elts line up.
return Context->getConstantExprBitCast(C, DestTy);
return Context.getConstantExprBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPoint()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
const Type *SrcIVTy = Context->getVectorType(
Context->getIntegerType(FPWidth), NumSrcElt);
const Type *SrcIVTy = Context.getVectorType(
Context.getIntegerType(FPWidth), NumSrcElt);
// Ask VMCore to do the conversion now that #elts line up.
C = Context->getConstantExprBitCast(C, SrcIVTy);
C = Context.getConstantExprBitCast(C, SrcIVTy);
CV = dyn_cast<ConstantVector>(C);
if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
}
@ -215,7 +215,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Context->getNullValue(DstEltTy);
Constant *Zero = Context.getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
@ -228,15 +228,15 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
if (!Src) return 0; // Reject constantexpr elements.
// Zero extend the element to the right size.
Src = Context->getConstantExprZExt(Src, Elt->getType());
Src = Context.getConstantExprZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = Context->getConstantExprShl(Src,
Context->getConstantInt(Src->getType(), ShiftAmt));
Src = Context.getConstantExprShl(Src,
Context.getConstantInt(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = Context->getConstantExprOr(Elt, Src);
Elt = Context.getConstantExprOr(Elt, Src);
}
Result.push_back(Elt);
}
@ -254,17 +254,17 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = Context->getConstantExprLShr(Src,
Context->getConstantInt(Src->getType(), ShiftAmt));
Constant *Elt = Context.getConstantExprLShr(Src,
Context.getConstantInt(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
Result.push_back(Context.getConstantExprTrunc(Elt, DstEltTy));
}
}
}
return Context->getConstantVector(Result.data(), Result.size());
return Context.getConstantVector(Result.data(), Result.size());
}
}
@ -282,11 +282,11 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
const TargetData *TD) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
return Context->getUndef(PN->getType());
return Context.getUndef(PN->getType());
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
if (Result == 0) return 0;
@ -322,7 +322,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD) {
SmallVector<Constant*, 8> Ops;
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
@ -345,7 +345,7 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant* const* Ops, unsigned NumOps,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
@ -354,7 +354,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Context))
return C;
return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
return Context.getConstantExpr(Opcode, Ops[0], Ops[1]);
}
switch (Opcode) {
@ -376,15 +376,15 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
Context->getConstantInt(APInt::getLowBitsSet(InWidth,
Context.getConstantInt(APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = Context->getConstantExprAnd(Input, Mask);
Input = Context.getConstantExprAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return Context->getConstantExprIntegerCast(Input, DestTy, false);
return Context.getConstantExprIntegerCast(Input, DestTy, false);
}
}
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
return Context.getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size. This requires knowing the width of a
@ -396,7 +396,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *Input = CE->getOperand(0);
Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
return C ? C : Context->getConstantExprBitCast(Input, DestTy);
return C ? C : Context.getConstantExprBitCast(Input, DestTy);
}
// If there's a constant offset added to the integer value before
// it is casted back to a pointer, see if the expression can be
@ -419,18 +419,18 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
AT->getNumElements()))) {
Constant *Index[] = {
Context->getNullValue(CE->getType()),
Context->getConstantInt(ElemIdx)
Context.getNullValue(CE->getType()),
Context.getConstantInt(ElemIdx)
};
return
Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
Context.getConstantExprGetElementPtr(GV, &Index[0], 2);
}
}
}
}
}
}
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
return Context.getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@ -440,25 +440,25 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
return Context.getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
return C;
return Context->getConstantExprBitCast(Ops[0], DestTy);
return Context.getConstantExprBitCast(Ops[0], DestTy);
case Instruction::Select:
return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
return Context.getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
return Context.getConstantExprExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
return Context.getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
return Context.getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
return C;
return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
return Context.getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
}
}
@ -469,7 +469,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops,
unsigned NumOps,
LLVMContext *Context,
LLVMContext &Context,
const TargetData *TD) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
@ -484,9 +484,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
Constant *C = Context.getConstantExprIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
Constant *NewOps[] = { C, Context.getNullValue(C->getType()) };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
}
@ -496,7 +496,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
Constant *NewOps[] = { C, Context.getNullValue(C->getType()) };
// FIXME!
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
@ -510,9 +510,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
Constant *C0 = Context.getConstantExprIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
Constant *C1 = Context.getConstantExprIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C0, C1 };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
@ -533,7 +533,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
}
}
}
return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
return Context.getConstantExprCompare(Predicate, Ops[0], Ops[1]);
}
@ -542,8 +542,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE,
LLVMContext *Context) {
if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
LLVMContext &Context) {
if (CE->getOperand(1) != Context.getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
@ -558,9 +558,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(El);
} else if (isa<ConstantAggregateZero>(C)) {
C = Context->getNullValue(STy->getElementType(El));
C = Context.getNullValue(STy->getElementType(El));
} else if (isa<UndefValue>(C)) {
C = Context->getUndef(STy->getElementType(El));
C = Context.getUndef(STy->getElementType(El));
} else {
return 0;
}
@ -571,9 +571,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Context->getNullValue(ATy->getElementType());
C = Context.getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = Context->getUndef(ATy->getElementType());
C = Context.getUndef(ATy->getElementType());
else
return 0;
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
@ -582,9 +582,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
C = CP->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Context->getNullValue(PTy->getElementType());
C = Context.getNullValue(PTy->getElementType());
else if (isa<UndefValue>(C))
C = Context->getUndef(PTy->getElementType());
C = Context.getUndef(PTy->getElementType());
else
return 0;
} else {
@ -679,7 +679,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty, LLVMContext *Context) {
const Type *Ty, LLVMContext &Context) {
errno = 0;
V = NativeFP(V);
if (errno != 0) {
@ -688,9 +688,9 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
}
if (Ty == Type::FloatTy)
return Context->getConstantFP(APFloat((float)V));
return Context.getConstantFP(APFloat((float)V));
if (Ty == Type::DoubleTy)
return Context->getConstantFP(APFloat(V));
return Context.getConstantFP(APFloat(V));
llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
@ -698,7 +698,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W,
const Type *Ty,
LLVMContext *Context) {
LLVMContext &Context) {
errno = 0;
V = NativeFP(V, W);
if (errno != 0) {
@ -707,9 +707,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
}
if (Ty == Type::FloatTy)
return Context->getConstantFP(APFloat((float)V));
return Context.getConstantFP(APFloat((float)V));
if (Ty == Type::DoubleTy)
return Context->getConstantFP(APFloat(V));
return Context.getConstantFP(APFloat(V));
llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
@ -721,7 +721,7 @@ Constant *
llvm::ConstantFoldCall(Function *F,
Constant* const* Operands, unsigned NumOperands) {
if (!F->hasName()) return 0;
LLVMContext *Context = F->getContext();
LLVMContext &Context = F->getContext();
const char *Str = F->getNameStart();
unsigned Len = F->getNameLen();
@ -775,7 +775,7 @@ llvm::ConstantFoldCall(Function *F,
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty, Context);
else // Undefined
return Context->getNullValue(Ty);
return Context.getNullValue(Ty);
}
break;
case 's':
@ -801,13 +801,13 @@ llvm::ConstantFoldCall(Function *F,
}
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
return Context->getConstantInt(Op->getValue().byteSwap());
return Context.getConstantInt(Op->getValue().byteSwap());
else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
return Context->getConstantInt(Ty, Op->getValue().countPopulation());
return Context.getConstantInt(Ty, Op->getValue().countPopulation());
else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
return Context.getConstantInt(Ty, Op->getValue().countTrailingZeros());
else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
return Context.getConstantInt(Ty, Op->getValue().countLeadingZeros());
}
} else if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
@ -830,10 +830,10 @@ llvm::ConstantFoldCall(Function *F,
}
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (!strcmp(Str, "llvm.powi.f32")) {
return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
return Context.getConstantFP(APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
} else if (!strcmp(Str, "llvm.powi.f64")) {
return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
return Context.getConstantFP(APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
}

View File

@ -693,7 +693,7 @@ void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
// If the object in the points-to set is the null object, then the null
// pointer is a must alias.
if (Pointee == &GraphNodes[NullObject])
RetVals.push_back(Context->getNullValue(P->getType()));
RetVals.push_back(P->getContext().getNullValue(P->getType()));
}
}
AliasAnalysis::getMustAliases(P, RetVals);

View File

@ -42,6 +42,8 @@ ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return ConstantRange(C->getValue()->getValue());
LLVMContext &Context = SE.getContext();
ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true);
@ -73,8 +75,8 @@ ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE
ConstantRange X = getRange(Mul->getOperand(0), T, SE);
if (X.isFullSet()) return FullSet;
const IntegerType *Ty = Context->getIntegerType(X.getBitWidth());
const IntegerType *ExTy = Context->getIntegerType(X.getBitWidth() *
const IntegerType *Ty = Context.getIntegerType(X.getBitWidth());
const IntegerType *ExTy = Context.getIntegerType(X.getBitWidth() *
Mul->getNumOperands());
ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth());

View File

@ -192,13 +192,13 @@ const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
}
const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
return getConstant(Context->getConstantInt(Val));
return getConstant(getContext().getConstantInt(Val));
}
const SCEV *
ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
return getConstant(
Context->getConstantInt(cast<IntegerType>(Ty), V, isSigned));
getContext().getConstantInt(cast<IntegerType>(Ty), V, isSigned));
}
const Type *SCEVConstant::getType() const { return V->getType(); }
@ -1518,7 +1518,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
++Idx;
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
ConstantInt *Fold = Context->getConstantInt(LHSC->getValue()->getValue() *
ConstantInt *Fold = getContext().getConstantInt(LHSC->getValue()->getValue() *
RHSC->getValue()->getValue());
Ops[0] = getConstant(Fold);
Ops.erase(Ops.begin()+1); // Erase the folded element
@ -1740,7 +1740,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Constant *LHSCV = LHSC->getValue();
Constant *RHSCV = RHSC->getValue();
return getConstant(cast<ConstantInt>(Context->getConstantExprUDiv(LHSCV,
return getConstant(cast<ConstantInt>(getContext().getConstantExprUDiv(LHSCV,
RHSCV)));
}
}
@ -1869,7 +1869,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(Idx < Ops.size());
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
ConstantInt *Fold = Context->getConstantInt(
ConstantInt *Fold = getContext().getConstantInt(
APIntOps::smax(LHSC->getValue()->getValue(),
RHSC->getValue()->getValue()));
Ops[0] = getConstant(Fold);
@ -1966,7 +1966,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(Idx < Ops.size());
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
ConstantInt *Fold = Context->getConstantInt(
ConstantInt *Fold = getContext().getConstantInt(
APIntOps::umax(LHSC->getValue()->getValue(),
RHSC->getValue()->getValue()));
Ops[0] = getConstant(Fold);
@ -2133,7 +2133,7 @@ const SCEV *ScalarEvolution::getSCEV(Value *V) {
/// specified signed integer value and return a SCEV for the constant.
const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
return getConstant(Context->getConstantInt(ITy, Val));
return getConstant(getContext().getConstantInt(ITy, Val));
}
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
@ -2141,24 +2141,24 @@ const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(
cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue())));
cast<ConstantInt>(getContext().getConstantExprNeg(VC->getValue())));
const Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
return getMulExpr(V,
getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty))));
getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty))));
}
/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(
cast<ConstantInt>(Context->getConstantExprNot(VC->getValue())));
cast<ConstantInt>(getContext().getConstantExprNot(VC->getValue())));
const Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
const SCEV *AllOnes =
getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty)));
getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty)));
return getMinusSCEV(AllOnes, V);
}
@ -2896,7 +2896,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// Turn shift left of a constant amount into a multiply.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Constant *X = Context->getConstantInt(
Constant *X = getContext().getConstantInt(
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
}
@ -2906,7 +2906,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// Turn logical shift right of a constant into a unsigned divide.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Constant *X = Context->getConstantInt(
Constant *X = getContext().getConstantInt(
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
}
@ -3477,7 +3477,7 @@ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
/// the addressed element of the initializer or null if the index expression is
/// invalid.
static Constant *
GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV,
GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
const std::vector<ConstantInt*> &Indices) {
Constant *Init = GV->getInitializer();
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
@ -3491,10 +3491,10 @@ GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV,
} else if (isa<ConstantAggregateZero>(Init)) {
if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
assert(Idx < STy->getNumElements() && "Bad struct index!");
Init = Context->getNullValue(STy->getElementType(Idx));
Init = Context.getNullValue(STy->getElementType(Idx));
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Init = Context->getNullValue(ATy->getElementType());
Init = Context.getNullValue(ATy->getElementType());
} else {
llvm_unreachable("Unknown constant aggregate type!");
}
@ -3558,14 +3558,14 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
ConstantInt *ItCst = Context->getConstantInt(
ConstantInt *ItCst = getContext().getConstantInt(
cast<IntegerType>(IdxExpr->getType()), IterationNum);
ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
// Form the GEP offset.
Indexes[VarIdxNum] = Val;
Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes);
Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
if (Result == 0) break; // Cannot compute!
// Evaluate the condition for this iteration.
@ -3649,7 +3649,7 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (Constant *C = dyn_cast<Constant>(V)) return C;
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Instruction *I = cast<Instruction>(V);
LLVMContext *Context = I->getParent()->getContext();
LLVMContext &Context = I->getParent()->getContext();
std::vector<Constant*> Operands;
Operands.resize(I->getNumOperands());
@ -3869,10 +3869,11 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
&Operands[0], Operands.size(),
Context);
getContext());
else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Operands[0], Operands.size(), Context);
&Operands[0], Operands.size(),
getContext());
Pair.first->second = C;
return getSCEV(C);
}
@ -4068,12 +4069,12 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
return std::make_pair(CNC, CNC);
}
LLVMContext *Context = SE.getContext();
LLVMContext &Context = SE.getContext();
ConstantInt *Solution1 =
Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA));
Context.getConstantInt((NegB + SqrtVal).sdiv(TwoA));
ConstantInt *Solution2 =
Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA));
Context.getConstantInt((NegB - SqrtVal).sdiv(TwoA));
return std::make_pair(SE.getConstant(Solution1),
SE.getConstant(Solution2));
@ -4141,7 +4142,7 @@ const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
#endif
// Pick the smallest positive root value.
if (ConstantInt *CB =
dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT,
dyn_cast<ConstantInt>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {
if (CB->getZExtValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
@ -4681,7 +4682,7 @@ const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
// Check Add for unsigned overflow.
// TODO: More sophisticated things could be done here.
const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
const Type *WideTy = getContext().getIntegerType(getTypeSizeInBits(Ty) + 1);
const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
@ -4835,7 +4836,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// The exit value should be (End+A)/A.
APInt ExitVal = (End + A).udiv(A);
ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal);
ConstantInt *ExitValue = SE.getContext().getConstantInt(ExitVal);
// Evaluate at the exit value. If we really did fall out of the valid
// range, then we computed our trip count, otherwise wrap around or other
@ -4847,7 +4848,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// Ensure that the previous value is in the range. This is a sanity check.
assert(Range.contains(
EvaluateConstantChrecAtConstant(this,
SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) &&
SE.getContext().getConstantInt(ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!");
return SE.getConstant(ExitValue);
} else if (isQuadratic()) {
@ -4868,7 +4869,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// Pick the smallest positive root value.
if (ConstantInt *CB =
dyn_cast<ConstantInt>(
SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT,
SE.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {
if (CB->getZExtValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
@ -4882,7 +4883,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
if (Range.contains(R1Val->getValue())) {
// The next iteration must be out of the range...
ConstantInt *NextVal =
SE.getContext()->getConstantInt(R1->getValue()->getValue()+1);
SE.getContext().getConstantInt(R1->getValue()->getValue()+1);
R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
if (!Range.contains(R1Val->getValue()))
@ -4893,7 +4894,7 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// If R1 was not in the range, then it is a good return value. Make
// sure that R1-1 WAS in the range though, just in case.
ConstantInt *NextVal =
SE.getContext()->getConstantInt(R1->getValue()->getValue()-1);
SE.getContext().getConstantInt(R1->getValue()->getValue()-1);
R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
if (Range.contains(R1Val->getValue()))
return R1;

View File

@ -55,7 +55,7 @@ Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
// FIXME: keep track of the cast instruction.
if (Constant *C = dyn_cast<Constant>(V))
return getContext()->getConstantExprCast(Op, C, Ty);
return getContext().getConstantExprCast(Op, C, Ty);
if (Argument *A = dyn_cast<Argument>(V)) {
// Check to see if there is already a cast!
@ -126,7 +126,7 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
// Fold a binop with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return getContext()->getConstantExpr(Opcode, CLHS, CRHS);
return getContext().getConstantExpr(Opcode, CLHS, CRHS);
// Do a quick scan to see if we have this binop nearby. If so, reuse it.
unsigned ScanLimit = 6;
@ -167,7 +167,7 @@ static bool FactorOutConstant(const SCEV *&S,
// For a Constant, check for a multiple of the given factor.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
ConstantInt *CI =
SE.getContext()->getConstantInt(C->getValue()->getValue().sdiv(Factor));
SE.getContext().getConstantInt(C->getValue()->getValue().sdiv(Factor));
// If the quotient is zero and the remainder is non-zero, reject
// the value at this scale. It will be considered for subsequent
// smaller scales.
@ -285,7 +285,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
Ops = NewOps;
AnyNonZeroIndices |= !ScaledOps.empty();
Value *Scaled = ScaledOps.empty() ?
getContext()->getNullValue(Ty) :
getContext().getNullValue(Ty) :
expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
GepIndices.push_back(Scaled);
@ -299,7 +299,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
if (FullOffset < SL.getSizeInBytes()) {
unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
GepIndices.push_back(
getContext()->getConstantInt(Type::Int32Ty, ElIdx));
getContext().getConstantInt(Type::Int32Ty, ElIdx));
ElTy = STy->getTypeAtIndex(ElIdx);
Ops[0] =
SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
@ -328,7 +328,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// Fold a GEP with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(V))
if (Constant *CRHS = dyn_cast<Constant>(Idx))
return getContext()->getConstantExprGetElementPtr(CLHS, &CRHS, 1);
return getContext().getConstantExprGetElementPtr(CLHS, &CRHS, 1);
// Do a quick scan to see if we have this GEP nearby. If so, reuse it.
unsigned ScanLimit = 6;
@ -400,7 +400,7 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
// -1 * ... ---> 0 - ...
if (FirstOp == 1)
V = InsertBinop(Instruction::Sub, getContext()->getNullValue(Ty), V);
V = InsertBinop(Instruction::Sub, getContext().getNullValue(Ty), V);
return V;
}
@ -412,7 +412,7 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
const APInt &RHS = SC->getValue()->getValue();
if (RHS.isPowerOf2())
return InsertBinop(Instruction::LShr, LHS,
getContext()->getConstantInt(Ty, RHS.logBase2()));
getContext().getConstantInt(Ty, RHS.logBase2()));
}
Value *RHS = expandCodeFor(S->getRHS(), Ty);
@ -522,7 +522,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
BasicBlock *Preheader = L->getLoopPreheader();
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
InsertedValues.insert(PN);
PN->addIncoming(getContext()->getNullValue(Ty), Preheader);
PN->addIncoming(getContext().getNullValue(Ty), Preheader);
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
@ -532,7 +532,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// Insert a unit add instruction right before the terminator corresponding
// to the back-edge.
Constant *One = getContext()->getConstantInt(Ty, 1);
Constant *One = getContext().getConstantInt(Ty, 1);
Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
(*HPI)->getTerminator());
InsertedValues.insert(Add);

View File

@ -824,7 +824,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
SmallVector<unsigned, 10> &Idxs,
unsigned IdxSkip,
LLVMContext *Context,
LLVMContext &Context,
Instruction *InsertBefore) {
const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
if (STy) {
@ -882,13 +882,13 @@ Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
//
// All inserted insertvalue instructions are inserted before InsertBefore
Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
const unsigned *idx_end, LLVMContext *Context,
const unsigned *idx_end, LLVMContext &Context,
Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_begin,
idx_end);
Value *To = Context->getUndef(IndexedType);
Value *To = Context.getUndef(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
unsigned IdxSkip = Idxs.size();
@ -903,7 +903,7 @@ Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
const unsigned *idx_end, LLVMContext *Context,
const unsigned *idx_end, LLVMContext &Context,
Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion)
@ -917,11 +917,11 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
const CompositeType *PTy = cast<CompositeType>(V->getType());
if (isa<UndefValue>(V))
return Context->getUndef(ExtractValueInst::getIndexedType(PTy,
return Context.getUndef(ExtractValueInst::getIndexedType(PTy,
idx_begin,
idx_end));
else if (isa<ConstantAggregateZero>(V))
return Context->getNullValue(ExtractValueInst::getIndexedType(PTy,
return Context.getNullValue(ExtractValueInst::getIndexedType(PTy,
idx_begin,
idx_end));
else if (Constant *C = dyn_cast<Constant>(V)) {

View File

@ -314,7 +314,7 @@ bool DwarfEHPrepare::PromoteStackTemporaries() {
if (ExceptionValueVar && DT && DF && isAllocaPromotable(ExceptionValueVar)) {
// Turn the exception temporary into registers and phi nodes if possible.
std::vector<AllocaInst*> Allocas(1, ExceptionValueVar);
PromoteMemToReg(Allocas, *DT, *DF, Context);
PromoteMemToReg(Allocas, *DT, *DF, ExceptionValueVar->getContext());
return true;
}
return false;
@ -355,7 +355,7 @@ Instruction *DwarfEHPrepare::CreateValueLoad(BasicBlock *BB) {
// Create the temporary if we didn't already.
if (!ExceptionValueVar) {
ExceptionValueVar = new AllocaInst(
Context->getPointerTypeUnqual(Type::Int8Ty),
BB->getContext().getPointerTypeUnqual(Type::Int8Ty),
"eh.value", F->begin()->begin());
++NumStackTempsIntroduced;
}

View File

@ -320,7 +320,7 @@ static void ReplaceFPIntrinsicWithCall(CallInst *CI, const char *Fname,
void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
IRBuilder<> Builder(CI->getParent(), CI);
LLVMContext *Context = CI->getParent()->getContext();
LLVMContext &Context = CI->getContext();
Function *Callee = CI->getCalledFunction();
assert(Callee && "Cannot lower an indirect call!");
@ -346,7 +346,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
}
case Intrinsic::sigsetjmp:
if (CI->getType() != Type::VoidTy)
CI->replaceAllUsesWith(Context->getNullValue(CI->getType()));
CI->replaceAllUsesWith(Context.getNullValue(CI->getType()));
break;
case Intrinsic::longjmp: {
@ -362,15 +362,15 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::ctpop:
CI->replaceAllUsesWith(LowerCTPOP(*Context, CI->getOperand(1), CI));
CI->replaceAllUsesWith(LowerCTPOP(Context, CI->getOperand(1), CI));
break;
case Intrinsic::bswap:
CI->replaceAllUsesWith(LowerBSWAP(*Context, CI->getOperand(1), CI));
CI->replaceAllUsesWith(LowerBSWAP(Context, CI->getOperand(1), CI));
break;
case Intrinsic::ctlz:
CI->replaceAllUsesWith(LowerCTLZ(*Context, CI->getOperand(1), CI));
CI->replaceAllUsesWith(LowerCTLZ(Context, CI->getOperand(1), CI));
break;
case Intrinsic::cttz: {
@ -378,9 +378,9 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
Value *Src = CI->getOperand(1);
Value *NotSrc = Builder.CreateNot(Src);
NotSrc->setName(Src->getName() + ".not");
Value *SrcM1 = Context->getConstantInt(Src->getType(), 1);
Value *SrcM1 = Context.getConstantInt(Src->getType(), 1);
SrcM1 = Builder.CreateSub(Src, SrcM1);
Src = LowerCTPOP(*Context, Builder.CreateAnd(NotSrc, SrcM1), CI);
Src = LowerCTPOP(Context, Builder.CreateAnd(NotSrc, SrcM1), CI);
CI->replaceAllUsesWith(Src);
break;
}
@ -393,7 +393,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
"save" : "restore") << " intrinsic.\n";
Warned = true;
if (Callee->getIntrinsicID() == Intrinsic::stacksave)
CI->replaceAllUsesWith(Context->getNullValue(CI->getType()));
CI->replaceAllUsesWith(Context.getNullValue(CI->getType()));
break;
}
@ -414,7 +414,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::readcyclecounter: {
cerr << "WARNING: this target does not support the llvm.readcyclecoun"
<< "ter intrinsic. It is being lowered to a constant 0\n";
CI->replaceAllUsesWith(Context->getConstantInt(Type::Int64Ty, 0));
CI->replaceAllUsesWith(Context.getConstantInt(Type::Int64Ty, 0));
break;
}
@ -428,13 +428,13 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::eh_exception:
case Intrinsic::eh_selector_i32:
case Intrinsic::eh_selector_i64:
CI->replaceAllUsesWith(Context->getNullValue(CI->getType()));
CI->replaceAllUsesWith(Context.getNullValue(CI->getType()));
break;
case Intrinsic::eh_typeid_for_i32:
case Intrinsic::eh_typeid_for_i64:
// Return something different to eh_selector.
CI->replaceAllUsesWith(Context->getConstantInt(CI->getType(), 1));
CI->replaceAllUsesWith(Context.getConstantInt(CI->getType(), 1));
break;
case Intrinsic::var_annotation:
@ -506,7 +506,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::flt_rounds:
// Lower to "round to the nearest"
if (CI->getType() != Type::VoidTy)
CI->replaceAllUsesWith(Context->getConstantInt(CI->getType(), 1));
CI->replaceAllUsesWith(Context.getConstantInt(CI->getType(), 1));
break;
}

View File

@ -21,7 +21,7 @@
using namespace llvm;
CCState::CCState(unsigned CC, bool isVarArg, const TargetMachine &tm,
SmallVector<CCValAssign, 16> &locs, LLVMContext *C)
SmallVector<CCValAssign, 16> &locs, LLVMContext &C)
: CallingConv(CC), IsVarArg(isVarArg), TM(tm),
TRI(*TM.getRegisterInfo()), Locs(locs), Context(C) {
// No stack is used.

View File

@ -92,7 +92,7 @@ unsigned FastISel::getRegForValue(Value *V) {
} else if (isa<ConstantPointerNull>(V)) {
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
Reg = getRegForValue(Context->getNullValue(TD.getIntPtrType()));
Reg = getRegForValue(V->getContext().getNullValue(TD.getIntPtrType()));
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
@ -108,7 +108,8 @@ unsigned FastISel::getRegForValue(Value *V) {
if (isExact) {
APInt IntVal(IntBitWidth, 2, x);
unsigned IntegerReg = getRegForValue(Context->getConstantInt(IntVal));
unsigned IntegerReg =
getRegForValue(V->getContext().getConstantInt(IntVal));
if (IntegerReg != 0)
Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
}
@ -480,7 +481,7 @@ bool FastISel::SelectCall(User *I) {
UpdateValueMap(I, ResultReg);
} else {
unsigned ResultReg =
getRegForValue(Context->getNullValue(I->getType()));
getRegForValue(I->getContext().getNullValue(I->getType()));
UpdateValueMap(I, ResultReg);
}
return true;
@ -753,8 +754,7 @@ FastISel::FastISel(MachineFunction &mf,
TM(MF.getTarget()),
TD(*TM.getTargetData()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()),
Context(mf.getFunction()->getContext()) {
TLI(*TM.getTargetLowering()) {
}
FastISel::~FastISel() {}

View File

@ -816,7 +816,7 @@ void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
MF = &mf;
MMI = mmi;
DW = dw;
Context = mf.getFunction()->getContext();
Context = &mf.getFunction()->getContext();
}
SelectionDAG::~SelectionDAG() {

View File

@ -62,10 +62,10 @@ namespace {
Constant *GetFrameMap(Function &F);
const Type* GetConcreteStackEntryType(Function &F);
void CollectRoots(Function &F);
static GetElementPtrInst *CreateGEP(LLVMContext *Context,
static GetElementPtrInst *CreateGEP(LLVMContext &Context,
IRBuilder<> &B, Value *BasePtr,
int Idx1, const char *Name);
static GetElementPtrInst *CreateGEP(LLVMContext *Context,
static GetElementPtrInst *CreateGEP(LLVMContext &Context,
IRBuilder<> &B, Value *BasePtr,
int Idx1, int Idx2, const char *Name);
};
@ -95,7 +95,7 @@ namespace {
public:
EscapeEnumerator(Function &F, const char *N = "cleanup")
: F(F), CleanupBBName(N), State(0), Builder(*F.getContext()) {}
: F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
IRBuilder<> *Next() {
switch (State) {
@ -188,7 +188,7 @@ ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
Constant *ShadowStackGC::GetFrameMap(Function &F) {
// doInitialization creates the abstract type of this value.
LLVMContext *Context = F.getContext();
LLVMContext &Context = F.getContext();
Type *VoidPtr = PointerType::getUnqual(Type::Int8Ty);
@ -203,17 +203,17 @@ Constant *ShadowStackGC::GetFrameMap(Function &F) {
}
Constant *BaseElts[] = {
Context->getConstantInt(Type::Int32Ty, Roots.size(), false),
Context->getConstantInt(Type::Int32Ty, NumMeta, false),
Context.getConstantInt(Type::Int32Ty, Roots.size(), false),
Context.getConstantInt(Type::Int32Ty, NumMeta, false),
};
Constant *DescriptorElts[] = {
Context->getConstantStruct(BaseElts, 2),
Context->getConstantArray(Context->getArrayType(VoidPtr, NumMeta),
Context.getConstantStruct(BaseElts, 2),
Context.getConstantArray(Context.getArrayType(VoidPtr, NumMeta),
Metadata.begin(), NumMeta)
};
Constant *FrameMap = Context->getConstantStruct(DescriptorElts, 2);
Constant *FrameMap = Context.getConstantStruct(DescriptorElts, 2);
std::string TypeName("gc_map.");
TypeName += utostr(NumMeta);
@ -236,9 +236,9 @@ Constant *ShadowStackGC::GetFrameMap(Function &F) {
GlobalVariable::InternalLinkage,
FrameMap, "__gc_" + F.getName());
Constant *GEPIndices[2] = { Context->getConstantInt(Type::Int32Ty, 0),
Context->getConstantInt(Type::Int32Ty, 0) };
return Context->getConstantExprGetElementPtr(GV, GEPIndices, 2);
Constant *GEPIndices[2] = { Context.getConstantInt(Type::Int32Ty, 0),
Context.getConstantInt(Type::Int32Ty, 0) };
return Context.getConstantExprGetElementPtr(GV, GEPIndices, 2);
}
const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
@ -340,11 +340,11 @@ void ShadowStackGC::CollectRoots(Function &F) {
}
GetElementPtrInst *
ShadowStackGC::CreateGEP(LLVMContext *Context, IRBuilder<> &B, Value *BasePtr,
ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
int Idx, int Idx2, const char *Name) {
Value *Indices[] = { Context->getConstantInt(Type::Int32Ty, 0),
Context->getConstantInt(Type::Int32Ty, Idx),
Context->getConstantInt(Type::Int32Ty, Idx2) };
Value *Indices[] = { Context.getConstantInt(Type::Int32Ty, 0),
Context.getConstantInt(Type::Int32Ty, Idx),
Context.getConstantInt(Type::Int32Ty, Idx2) };
Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
@ -353,10 +353,10 @@ ShadowStackGC::CreateGEP(LLVMContext *Context, IRBuilder<> &B, Value *BasePtr,
}
GetElementPtrInst *
ShadowStackGC::CreateGEP(LLVMContext *Context, IRBuilder<> &B, Value *BasePtr,
ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
int Idx, const char *Name) {
Value *Indices[] = { Context->getConstantInt(Type::Int32Ty, 0),
Context->getConstantInt(Type::Int32Ty, Idx) };
Value *Indices[] = { Context.getConstantInt(Type::Int32Ty, 0),
Context.getConstantInt(Type::Int32Ty, Idx) };
Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
@ -366,7 +366,7 @@ ShadowStackGC::CreateGEP(LLVMContext *Context, IRBuilder<> &B, Value *BasePtr,
/// runOnFunction - Insert code to maintain the shadow stack.
bool ShadowStackGC::performCustomLowering(Function &F) {
LLVMContext *Context = F.getContext();
LLVMContext &Context = F.getContext();
// Find calls to llvm.gcroot.
CollectRoots(F);

View File

@ -68,7 +68,7 @@ bool UnreachableBlockElim::runOnFunction(Function &F) {
BasicBlock *BB = I;
DeadBlocks.push_back(BB);
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
PN->replaceAllUsesWith(Context->getNullValue(PN->getType()));
PN->replaceAllUsesWith(F.getContext().getNullValue(PN->getType()));
BB->getInstList().pop_front();
}
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)

View File

@ -368,7 +368,7 @@ void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
GenericValue JIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
LLVMContext *Context = F->getContext();
LLVMContext &Context = F->getContext();
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
@ -470,7 +470,7 @@ GenericValue JIT::runFunction(Function *F,
// arguments. Make this function and return.
// First, create the function.
FunctionType *STy=Context->getFunctionType(RetTy, false);
FunctionType *STy=Context.getFunctionType(RetTy, false);
Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
F->getParent());
@ -487,27 +487,27 @@ GenericValue JIT::runFunction(Function *F,
switch (ArgTy->getTypeID()) {
default: llvm_unreachable("Unknown argument type for function call!");
case Type::IntegerTyID:
C = Context->getConstantInt(AV.IntVal);
C = Context.getConstantInt(AV.IntVal);
break;
case Type::FloatTyID:
C = Context->getConstantFP(APFloat(AV.FloatVal));
C = Context.getConstantFP(APFloat(AV.FloatVal));
break;
case Type::DoubleTyID:
C = Context->getConstantFP(APFloat(AV.DoubleVal));
C = Context.getConstantFP(APFloat(AV.DoubleVal));
break;
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
C = Context->getConstantFP(APFloat(AV.IntVal));
C = Context.getConstantFP(APFloat(AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4)
C = Context->getConstantInt(Type::Int32Ty, (int)(intptr_t)ArgPtr);
C = Context.getConstantInt(Type::Int32Ty, (int)(intptr_t)ArgPtr);
else
C = Context->getConstantInt(Type::Int64Ty, (intptr_t)ArgPtr);
C = Context.getConstantInt(Type::Int64Ty, (intptr_t)ArgPtr);
// Cast the integer to pointer
C = Context->getConstantExprIntToPtr(C, ArgTy);
C = Context.getConstantExprIntToPtr(C, ArgTy);
break;
}
Args.push_back(C);

View File

@ -1073,7 +1073,7 @@ static bool LinkFunctionBody(Function *Dest, Function *Src,
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
OI != OE; ++OI)
if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
*OI = RemapOperand(*OI, ValueMap, *Dest->getContext());
*OI = RemapOperand(*OI, ValueMap, Dest->getContext());
// There is no need to map the arguments anymore.
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();

View File

@ -893,7 +893,7 @@ emitLoadConstPool(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
Constant *C =
MF.getFunction()->getContext()->getConstantInt(Type::Int32Ty, Val);
MF.getFunction()->getContext().getConstantInt(Type::Int32Ty, Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))

View File

@ -696,7 +696,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
SmallVector<CCValAssign, 16> RVLocs;
bool isVarArg = TheCall->isVarArg();
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall,
CCAssignFnForNode(CallingConv, /* Return*/ true));
@ -832,7 +832,7 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
// Get a count of how many bytes are to be pushed on the stack.
@ -1032,7 +1032,7 @@ SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
// CCState - Info about the registers and stack slots.
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
// Analyze return values of ISD::RET.
CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
@ -1384,7 +1384,7 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(),
CCAssignFnForNode(CC, /* Return*/ false));

View File

@ -59,7 +59,7 @@ void Thumb1RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
Constant *C =
MF.getFunction()->getContext()->getConstantInt(Type::Int32Ty, Val);
MF.getFunction()->getContext().getConstantInt(Type::Int32Ty, Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::tLDRcp))

View File

@ -53,7 +53,7 @@ void Thumb2RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
Constant *C =
MF.getFunction()->getContext()->getConstantInt(Type::Int32Ty, Val);
MF.getFunction()->getContext().getConstantInt(Type::Int32Ty, Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2LDRpci))

View File

@ -238,7 +238,7 @@ SDValue AlphaTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(TheCall, CC_Alpha);
@ -356,7 +356,7 @@ AlphaTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs,
DAG.getContext());
*DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_Alpha);
SmallVector<SDValue, 8> ResultVals;

View File

@ -1238,7 +1238,7 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Context->getNullValue(AT->getElementType());
Constant *CZ = CPV->getContext().getNullValue(AT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
@ -1263,7 +1263,7 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
const VectorType *VT = cast<VectorType>(CPV->getType());
Out << "{ ";
Constant *CZ = Context->getNullValue(VT->getElementType());
Constant *CZ = CPV->getContext().getNullValue(VT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Out << ", ";
@ -1285,10 +1285,12 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
Out << '{';
if (ST->getNumElements()) {
Out << ' ';
printConstant(Context->getNullValue(ST->getElementType(0)), Static);
printConstant(
CPV->getContext().getNullValue(ST->getElementType(0)), Static);
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(Context->getNullValue(ST->getElementType(i)), Static);
printConstant(
CPV->getContext().getNullValue(ST->getElementType(i)), Static);
}
}
Out << " }";
@ -3498,7 +3500,7 @@ void CWriter::visitStoreInst(StoreInst &I) {
if (!ITy->isPowerOf2ByteWidth())
// We have a bit width that doesn't match an even power-of-2 byte
// size. Consequently we must & the value with the type's bit mask
BitMask = Context->getConstantInt(ITy, ITy->getBitMask());
BitMask = I.getContext().getConstantInt(ITy, ITy->getBitMask());
if (BitMask)
Out << "((";
writeOperand(Operand);

View File

@ -1385,7 +1385,7 @@ LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM) {
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
DebugLoc dl = Op.getDebugLoc();
CCState CCInfo(CC, isVarArg, TM, RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, TM, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_SPU);
// If this is the first return lowered for this function, add the regs to the

View File

@ -195,7 +195,7 @@ SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MSP430);
assert(!isVarArg && "Varargs not supported yet");
@ -272,7 +272,7 @@ SDValue MSP430TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_MSP430);
@ -324,7 +324,7 @@ SDValue MSP430TargetLowering::LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(TheCall, CC_MSP430);
@ -452,7 +452,7 @@ MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_MSP430);
SmallVector<SDValue, 8> ResultVals;

View File

@ -735,7 +735,7 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
// To meet O32 ABI, Mips must always allocate 16 bytes on
// the stack (even if less than 4 are used as arguments)
@ -919,7 +919,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips);
SmallVector<SDValue, 8> ResultVals;
@ -963,7 +963,7 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
if (Subtarget->isABI_O32())
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MipsO32);
@ -1111,7 +1111,7 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips);

View File

@ -1527,7 +1527,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
@ -1586,7 +1586,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CC, isVarArg, getTargetMachine(),
ByValArgLocs, DAG.getContext());
ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
@ -2455,7 +2455,7 @@ static SDValue LowerCallReturn(SDValue Op, SelectionDAG &DAG, TargetMachine &TM,
SmallVector<SDValue, 16> ResultVals;
SmallVector<CCValAssign, 16> RVLocs;
unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
CCState CCRetInfo(CallerCC, isVarArg, TM, RVLocs, DAG.getContext());
CCState CCRetInfo(CallerCC, isVarArg, TM, RVLocs, *DAG.getContext());
CCRetInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
@ -2561,7 +2561,7 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
@ -2602,7 +2602,7 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CC, isVarArg, getTargetMachine(), ByValArgLocs,
DAG.getContext());
*DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
@ -3067,7 +3067,7 @@ SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
DebugLoc dl = Op.getDebugLoc();
CCState CCInfo(CC, isVarArg, TM, RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, TM, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
// If this is the first return lowered for this function, add the regs to the

View File

@ -40,7 +40,7 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, DAG.getTarget(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, DAG.getTarget(), RVLocs, *DAG.getContext());
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Sparc32);
@ -90,7 +90,7 @@ SparcTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Sparc32);
static const unsigned ArgRegs[] = {
@ -469,7 +469,7 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallingConv, isVarArg, DAG.getTarget(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
RVInfo.AnalyzeCallResult(TheCall, RetCC_Sparc32);
SmallVector<SDValue, 8> ResultVals;

View File

@ -213,7 +213,7 @@ SDValue SystemZTargetLowering::LowerCCCArguments(SDValue Op,
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_SystemZ);
if (isVarArg)
@ -305,7 +305,7 @@ SDValue SystemZTargetLowering::LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(TheCall, CC_SystemZ);
@ -436,7 +436,7 @@ SystemZTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs,
DAG.getContext());
*DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_SystemZ);
SmallVector<SDValue, 8> ResultVals;
@ -482,7 +482,7 @@ SDValue SystemZTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_SystemZ);

View File

@ -272,7 +272,7 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
const X86AddressMode &AM) {
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Val))
Val = Context->getNullValue(TD.getIntPtrType());
Val = Val->getContext().getNullValue(TD.getIntPtrType());
// If this is a store of a simple constant, fold the constant into the store.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
@ -672,7 +672,7 @@ bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Op1))
Op1 = Context->getNullValue(TD.getIntPtrType());
Op1 = Op0->getContext().getNullValue(TD.getIntPtrType());
// We have two options: compare with register or immediate. If the RHS of
// the compare is an immediate that we can fold into this compare, use

View File

@ -1049,7 +1049,7 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
SmallVector<CCValAssign, 16> RVLocs;
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
// If this is the first return lowered for this function, add the regs to the
@ -1176,7 +1176,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
bool isVarArg = TheCall->isVarArg();
bool Is64Bit = Subtarget->is64Bit();
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
SmallVector<SDValue, 8> ResultVals;
@ -1385,7 +1385,7 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
SmallVector<SDValue, 8> ArgValues;
@ -1680,7 +1680,7 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
// Get a count of how many bytes are to be pushed on the stack.

View File

@ -2284,8 +2284,8 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineConstantPool &MCP = *MF.getConstantPool();
const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
MF.getFunction()->getContext()->getNullValue(Ty) :
MF.getFunction()->getContext()->getAllOnesValue(Ty);
MF.getFunction()->getContext().getNullValue(Ty) :
MF.getFunction()->getContext().getAllOnesValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, 16);
// Create operands to load from the constant pool entry.

View File

@ -648,7 +648,7 @@ LowerCCCCallTo(SDValue Op, SelectionDAG &DAG, unsigned CC)
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
@ -775,7 +775,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
RVLocs, DAG.getContext());
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(TheCall, RetCC_XCore);
SmallVector<SDValue, 8> ResultVals;
@ -831,7 +831,7 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_XCore);
@ -948,7 +948,7 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_XCore);

View File

@ -576,6 +576,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
const Type *RetTy = FTy->getReturnType();
LLVMContext &Context = RetTy->getContext();
// Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
// have zero fixed arguments.
@ -586,7 +587,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
}
// Construct the new function type using the new arguments.
FunctionType *NFTy = Context->getFunctionType(RetTy, Params, FTy->isVarArg());
FunctionType *NFTy = Context.getFunctionType(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
@ -637,9 +638,9 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Emit a GEP and load for each element of the struct.
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
const StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = { Context->getConstantInt(Type::Int32Ty, 0), 0 };
Value *Idxs[2] = { Context.getConstantInt(Type::Int32Ty, 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = Context->getConstantInt(Type::Int32Ty, i);
Idxs[1] = Context.getConstantInt(Type::Int32Ty, i);
Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
(*AI)->getName()+"."+utostr(i),
Call);
@ -664,7 +665,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Use i32 to index structs, and i64 for others (pointers/arrays).
// This satisfies GEP constraints.
const Type *IdxTy = (isa<StructType>(ElTy) ? Type::Int32Ty : Type::Int64Ty);
Ops.push_back(Context->getConstantInt(IdxTy, *II));
Ops.push_back(Context.getConstantInt(IdxTy, *II));
// Keep track of the type we're currently indexing
ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
}
@ -680,7 +681,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
}
if (ExtraArgHack)
Args.push_back(Context->getNullValue(Type::Int32Ty));
Args.push_back(Context.getNullValue(Type::Int32Ty));
// Push any varargs arguments on the list
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
@ -757,10 +758,10 @@ Function *ArgPromotion::DoPromotion(Function *F,
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
const StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = { Context->getConstantInt(Type::Int32Ty, 0), 0 };
Value *Idxs[2] = { Context.getConstantInt(Type::Int32Ty, 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = Context->getConstantInt(Type::Int32Ty, i);
Idxs[1] = Context.getConstantInt(Type::Int32Ty, i);
std::string Name = TheAlloca->getName()+"."+utostr(i);
Value *Idx = GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
Name, InsertPt);
@ -843,7 +844,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Notify the alias analysis implementation that we inserted a new argument.
if (ExtraArgHack)
AA.copyValue(Context->getNullValue(Type::Int32Ty), NF->arg_begin());
AA.copyValue(Context.getNullValue(Type::Int32Ty), NF->arg_begin());
// Tell the alias analysis that the old function is about to disappear.

View File

@ -196,8 +196,10 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
LLVMContext &Context = FTy->getContext();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = Context->getFunctionType(FTy->getReturnType(),
FunctionType *NFTy = Context.getFunctionType(FTy->getReturnType(),
Params, false);
unsigned NumArgs = Params.size();
@ -598,6 +600,9 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
LLVMContext &Context = RetTy->getContext();
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
@ -635,7 +640,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// something and {} into void.
// Make the new struct packed if we used to return a packed struct
// already.
NRetTy = Context->getStructType(RetTypes, STy->isPacked());
NRetTy = Context.getStructType(RetTypes, STy->isPacked());
else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
@ -703,7 +708,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = Context->getFunctionType(NRetTy, Params,
FunctionType *NFTy = Context.getFunctionType(NRetTy, Params,
FTy->isVarArg());
// No change?
@ -753,7 +758,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
if (ExtraArgHack)
Args.push_back(Context->getUndef(Type::Int32Ty));
Args.push_back(Context.getUndef(Type::Int32Ty));
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
@ -792,7 +797,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
} else if (New->getType() == Type::VoidTy) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
Call->replaceAllUsesWith(Context->getNullValue(Call->getType()));
Call->replaceAllUsesWith(Context.getNullValue(Call->getType()));
} else {
assert(isa<StructType>(RetTy) &&
"Return type changed, but not into a void. The old return type"
@ -809,7 +814,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// extract/insertvalue chaining and let instcombine clean that up.
//
// Start out building up our return value from undef
Value *RetVal = Context->getUndef(RetTy);
Value *RetVal = Context.getUndef(RetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
Value *V;
@ -855,7 +860,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on).
I->replaceAllUsesWith(Context->getNullValue(I->getType()));
I->replaceAllUsesWith(Context.getNullValue(I->getType()));
}
// If we change the return value of the function we must rewrite any return
@ -876,7 +881,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// clean that up.
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
RetVal = Context->getUndef(NRetTy);
RetVal = Context.getUndef(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
@ -908,7 +913,6 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
bool DAE::runOnModule(Module &M) {
bool Changed = false;
Context = &M.getContext();
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be

View File

@ -77,7 +77,6 @@ static inline bool ShouldNukeSymtabEntry(const Type *Ty){
//
bool DTE::runOnModule(Module &M) {
bool Changed = false;
Context = &M.getContext();
TypeSymbolTable &ST = M.getTypeSymbolTable();
std::set<const Type *> UsedTypes = getAnalysis<FindUsedTypes>().getTypes();

View File

@ -44,7 +44,6 @@ namespace {
return false; // Nothing to extract
}
Context = &M.getContext();
if (deleteStuff)
return deleteGV();
@ -87,6 +86,8 @@ namespace {
}
bool isolateGV(Module &M) {
LLVMContext &Context = M.getContext();
// Mark all globals internal
// FIXME: what should we do with private linkage?
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
@ -102,14 +103,14 @@ namespace {
// by putting them in the used array
{
std::vector<Constant *> AUGs;
const Type *SBP= Context->getPointerTypeUnqual(Type::Int8Ty);
const Type *SBP= Context.getPointerTypeUnqual(Type::Int8Ty);
for (std::vector<GlobalValue*>::iterator GI = Named.begin(),
GE = Named.end(); GI != GE; ++GI) {
(*GI)->setLinkage(GlobalValue::ExternalLinkage);
AUGs.push_back(Context->getConstantExprBitCast(*GI, SBP));
AUGs.push_back(Context.getConstantExprBitCast(*GI, SBP));
}
ArrayType *AT = Context->getArrayType(SBP, AUGs.size());
Constant *Init = Context->getConstantArray(AT, AUGs);
ArrayType *AT = Context.getArrayType(SBP, AUGs.size());
Constant *Init = Context.getConstantArray(AT, AUGs);
GlobalValue *gv = new GlobalVariable(M, AT, false,
GlobalValue::AppendingLinkage,
Init, "llvm.used");

View File

@ -58,7 +58,6 @@ ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCE(); }
bool GlobalDCE::runOnModule(Module &M) {
bool Changed = false;
Context = &M.getContext();
// Loop over the module, adding globals which are obviously necessary.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {

View File

@ -247,7 +247,7 @@ static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
}
static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
LLVMContext *Context) {
LLVMContext &Context) {
ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
if (!CI) return 0;
unsigned IdxV = CI->getZExtValue();
@ -261,18 +261,18 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
} else if (isa<ConstantAggregateZero>(Agg)) {
if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
if (IdxV < STy->getNumElements())
return Context->getNullValue(STy->getElementType(IdxV));
return Context.getNullValue(STy->getElementType(IdxV));
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(Agg->getType())) {
return Context->getNullValue(STy->getElementType());
return Context.getNullValue(STy->getElementType());
}
} else if (isa<UndefValue>(Agg)) {
if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
if (IdxV < STy->getNumElements())
return Context->getUndef(STy->getElementType(IdxV));
return Context.getUndef(STy->getElementType(IdxV));
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(Agg->getType())) {
return Context->getUndef(STy->getElementType());
return Context.getUndef(STy->getElementType());
}
}
return 0;
@ -284,7 +284,7 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
/// quick scan over the use list to clean up the easy and obvious cruft. This
/// returns true if it made a change.
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
LLVMContext *Context) {
LLVMContext &Context) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
User *U = *UI++;
@ -466,7 +466,7 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
/// this transformation is safe already. We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
LLVMContext *Context) {
LLVMContext &Context) {
// Make sure this global only has simple uses that we can SRA.
if (!GlobalUsersSafeToSRA(GV))
return 0;
@ -488,10 +488,10 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
const StructLayout &Layout = *TD.getStructLayout(STy);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
Context->getConstantInt(Type::Int32Ty, i),
Context.getConstantInt(Type::Int32Ty, i),
Context);
assert(In && "Couldn't get element of initializer?");
GlobalVariable *NGV = new GlobalVariable(*Context,
GlobalVariable *NGV = new GlobalVariable(Context,
STy->getElementType(i), false,
GlobalVariable::InternalLinkage,
In, GV->getName()+"."+utostr(i),
@ -523,11 +523,11 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
Context->getConstantInt(Type::Int32Ty, i),
Context.getConstantInt(Type::Int32Ty, i),
Context);
assert(In && "Couldn't get element of initializer?");
GlobalVariable *NGV = new GlobalVariable(*Context,
GlobalVariable *NGV = new GlobalVariable(Context,
STy->getElementType(), false,
GlobalVariable::InternalLinkage,
In, GV->getName()+"."+utostr(i),
@ -550,7 +550,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
Constant *NullInt = Context->getNullValue(Type::Int32Ty);
Constant *NullInt = Context.getNullValue(Type::Int32Ty);
// Loop over all of the uses of the global, replacing the constantexpr geps,
// with smaller constantexpr geps or direct references.
@ -575,7 +575,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
Idxs.push_back(NullInt);
for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
Idxs.push_back(CE->getOperand(i));
NewPtr = Context->getConstantExprGetElementPtr(cast<Constant>(NewPtr),
NewPtr = Context.getConstantExprGetElementPtr(cast<Constant>(NewPtr),
&Idxs[0], Idxs.size());
} else {
GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
@ -675,7 +675,7 @@ static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
}
static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
LLVMContext *Context) {
LLVMContext &Context) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
Instruction *I = cast<Instruction>(*UI++);
@ -707,7 +707,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
}
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
Changed |= OptimizeAwayTrappingUsesOfValue(CI,
Context->getConstantExprCast(CI->getOpcode(),
Context.getConstantExprCast(CI->getOpcode(),
NewV, CI->getType()), Context);
if (CI->use_empty()) {
Changed = true;
@ -725,7 +725,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
break;
if (Idxs.size() == GEPI->getNumOperands()-1)
Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
Context->getConstantExprGetElementPtr(NewV, &Idxs[0],
Context.getConstantExprGetElementPtr(NewV, &Idxs[0],
Idxs.size()), Context);
if (GEPI->use_empty()) {
Changed = true;
@ -743,7 +743,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
/// if the loaded value is dynamically null, then we know that they cannot be
/// reachable with a null optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
LLVMContext *Context) {
LLVMContext &Context) {
bool Changed = false;
// Keep track of whether we are able to remove all the uses of the global
@ -797,7 +797,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
/// instructions that are foldable.
static void ConstantPropUsersOf(Value *V, LLVMContext *Context) {
static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
if (Instruction *I = dyn_cast<Instruction>(*UI++))
if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
@ -818,20 +818,20 @@ static void ConstantPropUsersOf(Value *V, LLVMContext *Context) {
/// malloc into a global, and any loads of GV as uses of the new global.
static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
MallocInst *MI,
LLVMContext *Context) {
LLVMContext &Context) {
DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI;
ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
if (NElements->getZExtValue() != 1) {
// If we have an array allocation, transform it to a single element
// allocation to make the code below simpler.
Type *NewTy = Context->getArrayType(MI->getAllocatedType(),
Type *NewTy = Context.getArrayType(MI->getAllocatedType(),
NElements->getZExtValue());
MallocInst *NewMI =
new MallocInst(NewTy, Context->getNullValue(Type::Int32Ty),
new MallocInst(NewTy, Context.getNullValue(Type::Int32Ty),
MI->getAlignment(), MI->getName(), MI);
Value* Indices[2];
Indices[0] = Indices[1] = Context->getNullValue(Type::Int32Ty);
Indices[0] = Indices[1] = Context.getNullValue(Type::Int32Ty);
Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
NewMI->getName()+".el0", MI);
MI->replaceAllUsesWith(NewGEP);
@ -844,7 +844,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// FIXME: This new global should have the alignment returned by malloc. Code
// could depend on malloc returning large alignment (on the mac, 16 bytes) but
// this would only guarantee some lower alignment.
Constant *Init = Context->getUndef(MI->getAllocatedType());
Constant *Init = Context.getUndef(MI->getAllocatedType());
GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
MI->getAllocatedType(), false,
GlobalValue::InternalLinkage, Init,
@ -857,15 +857,15 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
Constant *RepValue = NewGV;
if (NewGV->getType() != GV->getType()->getElementType())
RepValue = Context->getConstantExprBitCast(RepValue,
RepValue = Context.getConstantExprBitCast(RepValue,
GV->getType()->getElementType());
// If there is a comparison against null, we will insert a global bool to
// keep track of whether the global was initialized yet or not.
GlobalVariable *InitBool =
new GlobalVariable(*Context, Type::Int1Ty, false,
new GlobalVariable(Context, Type::Int1Ty, false,
GlobalValue::InternalLinkage,
Context->getFalse(), GV->getName()+".init",
Context.getFalse(), GV->getName()+".init",
GV->isThreadLocal());
bool InitBoolUsed = false;
@ -886,12 +886,12 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
default: llvm_unreachable("Unknown ICmp Predicate!");
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
LV = Context->getFalse(); // X < null -> always false
LV = Context.getFalse(); // X < null -> always false
break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_EQ:
LV = BinaryOperator::CreateNot(*Context, LV, "notinit", CI);
LV = BinaryOperator::CreateNot(Context, LV, "notinit", CI);
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGE:
@ -908,7 +908,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
} else {
StoreInst *SI = cast<StoreInst>(GV->use_back());
// The global is initialized when the store to it occurs.
new StoreInst(Context->getTrue(), InitBool, SI);
new StoreInst(Context.getTrue(), InitBool, SI);
SI->eraseFromParent();
}
@ -1133,7 +1133,7 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
LLVMContext *Context) {
LLVMContext &Context) {
std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
if (FieldNo >= FieldVals.size())
@ -1160,7 +1160,7 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
Result =
PHINode::Create(Context->getPointerTypeUnqual(ST->getElementType(FieldNo)),
PHINode::Create(Context.getPointerTypeUnqual(ST->getElementType(FieldNo)),
PN->getName()+".f"+utostr(FieldNo), PN);
PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
} else {
@ -1176,7 +1176,7 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
static void RewriteHeapSROALoadUser(Instruction *LoadUser,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
LLVMContext *Context) {
LLVMContext &Context) {
// If this is a comparison against null, handle it.
if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
@ -1187,7 +1187,7 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
Context);
Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
Context->getNullValue(NPtr->getType()),
Context.getNullValue(NPtr->getType()),
SCI->getName());
SCI->replaceAllUsesWith(New);
SCI->eraseFromParent();
@ -1247,7 +1247,7 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
LLVMContext *Context) {
LLVMContext &Context) {
for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
UI != E; ) {
Instruction *User = cast<Instruction>(*UI++);
@ -1264,7 +1264,7 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
/// it up into multiple allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
LLVMContext *Context){
LLVMContext &Context){
DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI;
const StructType *STy = cast<StructType>(MI->getAllocatedType());
@ -1281,12 +1281,12 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
const Type *FieldTy = STy->getElementType(FieldNo);
const Type *PFieldTy = Context->getPointerTypeUnqual(FieldTy);
const Type *PFieldTy = Context.getPointerTypeUnqual(FieldTy);
GlobalVariable *NGV =
new GlobalVariable(*GV->getParent(),
PFieldTy, false, GlobalValue::InternalLinkage,
Context->getNullValue(PFieldTy),
Context.getNullValue(PFieldTy),
GV->getName() + ".f" + utostr(FieldNo), GV,
GV->isThreadLocal());
FieldGlobals.push_back(NGV);
@ -1312,7 +1312,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
Value *RunningOr = 0;
for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
Context->getNullValue(FieldMallocs[i]->getType()),
Context.getNullValue(FieldMallocs[i]->getType()),
"isnull");
if (!RunningOr)
RunningOr = Cond; // First seteq
@ -1339,7 +1339,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
Context->getNullValue(GVVal->getType()),
Context.getNullValue(GVVal->getType()),
"tmp");
BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
@ -1347,7 +1347,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
// Fill in FreeBlock.
new FreeInst(GVVal, FreeBlock);
new StoreInst(Context->getNullValue(GVVal->getType()), FieldGlobals[i],
new StoreInst(Context.getNullValue(GVVal->getType()), FieldGlobals[i],
FreeBlock);
BranchInst::Create(NextBlock, FreeBlock);
@ -1387,7 +1387,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
// Insert a store of null into each global.
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
Constant *Null = Context->getNullValue(PT->getElementType());
Constant *Null = Context.getNullValue(PT->getElementType());
new StoreInst(Null, FieldGlobals[i], SI);
}
// Erase the original store.
@ -1445,7 +1445,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
MallocInst *MI,
Module::global_iterator &GVI,
TargetData &TD,
LLVMContext *Context) {
LLVMContext &Context) {
// If this is a malloc of an abstract type, don't touch it.
if (!MI->getAllocatedType()->isSized())
return false;
@ -1508,7 +1508,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
MallocInst *NewMI =
new MallocInst(AllocSTy,
Context->getConstantInt(Type::Int32Ty, AT->getNumElements()),
Context.getConstantInt(Type::Int32Ty, AT->getNumElements()),
"", MI);
NewMI->takeName(MI);
Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
@ -1529,7 +1529,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// that only one value (besides its initializer) is ever stored to the global.
static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
Module::global_iterator &GVI,
TargetData &TD, LLVMContext *Context) {
TargetData &TD, LLVMContext &Context) {
// Ignore no-op GEPs and bitcasts.
StoredOnceVal = StoredOnceVal->stripPointerCasts();
@ -1542,7 +1542,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
if (GV->getInitializer()->getType() != SOVC->getType())
SOVC =
Context->getConstantExprBitCast(SOVC, GV->getInitializer()->getType());
Context.getConstantExprBitCast(SOVC, GV->getInitializer()->getType());
// Optimize away any trapping uses of the loaded value.
if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
@ -1561,7 +1561,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
/// can shrink the global into a boolean and select between the two values
/// whenever it is used. This exposes the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
LLVMContext *Context) {
LLVMContext &Context) {
const Type *GVElType = GV->getType()->getElementType();
// If GVElType is already i1, it is already shrunk. If the type of the GV is
@ -1582,8 +1582,8 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
DOUT << " *** SHRINKING TO BOOL: " << *GV;
// Create the new global, initializing it to false.
GlobalVariable *NewGV = new GlobalVariable(*Context, Type::Int1Ty, false,
GlobalValue::InternalLinkage, Context->getFalse(),
GlobalVariable *NewGV = new GlobalVariable(Context, Type::Int1Ty, false,
GlobalValue::InternalLinkage, Context.getFalse(),
GV->getName()+".b",
GV->isThreadLocal());
GV->getParent()->getGlobalList().insert(GV, NewGV);
@ -1605,7 +1605,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
// Only do this if we weren't storing a loaded value.
Value *StoreVal;
if (StoringOther || SI->getOperand(0) == InitVal)
StoreVal = Context->getConstantInt(Type::Int1Ty, StoringOther);
StoreVal = Context.getConstantInt(Type::Int1Ty, StoringOther);
else {
// Otherwise, we are storing a previously loaded copy. To do this,
// change the copy from copying the original value to just copying the
@ -1721,7 +1721,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// Delete any stores we can find to the global. We may not be able to
// make it completely dead though.
bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
Context);
GV->getContext());
// If the global is dead now, delete it.
if (GV->use_empty()) {
@ -1736,7 +1736,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
// If the global is dead now, just nuke it.
if (GV->use_empty()) {
@ -1751,7 +1751,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
} else if (!GV->getInitializer()->getType()->isSingleValueType()) {
if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
getAnalysis<TargetData>(),
Context)) {
GV->getContext())) {
GVI = FirstNewGV; // Don't skip the newly produced globals!
return true;
}
@ -1766,7 +1766,8 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->setInitializer(SOVConstant);
// Clean up any obviously simplifiable users now.
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
CleanupConstantGlobalUsers(GV, GV->getInitializer(),
GV->getContext());
if (GV->use_empty()) {
DOUT << " *** Substituting initializer allowed us to "
@ -1783,13 +1784,13 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// Try to optimize globals based on the knowledge that only one value
// (besides its initializer) is ever stored to the global.
if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
getAnalysis<TargetData>(), Context))
getAnalysis<TargetData>(), GV->getContext()))
return true;
// Otherwise, if the global was not a boolean, we can shrink it to be a
// boolean.
if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
if (TryToShrinkGlobalToBoolean(GV, SOVConstant, Context)) {
if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
++NumShrunkToBool;
return true;
}
@ -1943,10 +1944,10 @@ static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
/// specified array, returning the new global to use.
static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
const std::vector<Function*> &Ctors,
LLVMContext *Context) {
LLVMContext &Context) {
// If we made a change, reassemble the initializer list.
std::vector<Constant*> CSVals;
CSVals.push_back(Context->getConstantInt(Type::Int32Ty, 65535));
CSVals.push_back(Context.getConstantInt(Type::Int32Ty, 65535));
CSVals.push_back(0);
// Create the new init list.
@ -1955,18 +1956,18 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
if (Ctors[i]) {
CSVals[1] = Ctors[i];
} else {
const Type *FTy = Context->getFunctionType(Type::VoidTy, false);
const PointerType *PFTy = Context->getPointerTypeUnqual(FTy);
CSVals[1] = Context->getNullValue(PFTy);
CSVals[0] = Context->getConstantInt(Type::Int32Ty, 2147483647);
const Type *FTy = Context.getFunctionType(Type::VoidTy, false);
const PointerType *PFTy = Context.getPointerTypeUnqual(FTy);
CSVals[1] = Context.getNullValue(PFTy);
CSVals[0] = Context.getConstantInt(Type::Int32Ty, 2147483647);
}
CAList.push_back(Context->getConstantStruct(CSVals));
CAList.push_back(Context.getConstantStruct(CSVals));
}
// Create the array initializer.
const Type *StructTy =
cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
Constant *CA = Context->getConstantArray(ArrayType::get(StructTy,
Constant *CA = Context.getConstantArray(ArrayType::get(StructTy,
CAList.size()), CAList);
// If we didn't change the number of elements, don't create a new GV.
@ -1976,7 +1977,7 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
// Create the new global and insert it next to the existing list.
GlobalVariable *NGV = new GlobalVariable(*Context, CA->getType(),
GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
GCL->isConstant(),
GCL->getLinkage(), CA, "",
GCL->isThreadLocal());
@ -1987,7 +1988,7 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
if (!GCL->use_empty()) {
Constant *V = NGV;
if (V->getType() != GCL->getType())
V = Context->getConstantExprBitCast(V, GCL->getType());
V = Context.getConstantExprBitCast(V, GCL->getType());
GCL->replaceAllUsesWith(V);
}
GCL->eraseFromParent();
@ -2011,7 +2012,7 @@ static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
/// enough for us to understand. In particular, if it is a cast of something,
/// we punt. We basically just support direct accesses to globals and GEP's of
/// globals. This should be kept up to date with CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext *Context) {
static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
@ -2036,7 +2037,7 @@ static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext *Context) {
/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
ConstantExpr *Addr, unsigned OpNo,
LLVMContext *Context) {
LLVMContext &Context) {
// Base case of the recursion.
if (OpNo == Addr->getNumOperands()) {
assert(Val->getType() == Init->getType() && "Type mismatch!");
@ -2052,10 +2053,10 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
Elts.push_back(cast<Constant>(*i));
} else if (isa<ConstantAggregateZero>(Init)) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Elts.push_back(Context->getNullValue(STy->getElementType(i)));
Elts.push_back(Context.getNullValue(STy->getElementType(i)));
} else if (isa<UndefValue>(Init)) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Elts.push_back(Context->getUndef(STy->getElementType(i)));
Elts.push_back(Context.getUndef(STy->getElementType(i)));
} else {
llvm_unreachable("This code is out of sync with "
" ConstantFoldLoadThroughGEPConstantExpr");
@ -2068,7 +2069,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
// Return the modified struct.
return Context->getConstantStruct(&Elts[0], Elts.size(), STy->isPacked());
return Context.getConstantStruct(&Elts[0], Elts.size(), STy->isPacked());
} else {
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
const ArrayType *ATy = cast<ArrayType>(Init->getType());
@ -2079,10 +2080,10 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
Elts.push_back(cast<Constant>(*i));
} else if (isa<ConstantAggregateZero>(Init)) {
Constant *Elt = Context->getNullValue(ATy->getElementType());
Constant *Elt = Context.getNullValue(ATy->getElementType());
Elts.assign(ATy->getNumElements(), Elt);
} else if (isa<UndefValue>(Init)) {
Constant *Elt = Context->getUndef(ATy->getElementType());
Constant *Elt = Context.getUndef(ATy->getElementType());
Elts.assign(ATy->getNumElements(), Elt);
} else {
llvm_unreachable("This code is out of sync with "
@ -2092,14 +2093,14 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
assert(CI->getZExtValue() < ATy->getNumElements());
Elts[CI->getZExtValue()] =
EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
return Context->getConstantArray(ATy, Elts);
return Context.getConstantArray(ATy, Elts);
}
}
/// CommitValueTo - We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
static void CommitValueTo(Constant *Val, Constant *Addr,
LLVMContext *Context) {
LLVMContext &Context) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
assert(GV->hasInitializer());
GV->setInitializer(Val);
@ -2119,7 +2120,7 @@ static void CommitValueTo(Constant *Val, Constant *Addr,
/// decide, return null.
static Constant *ComputeLoadResult(Constant *P,
const DenseMap<Constant*, Constant*> &Memory,
LLVMContext *Context) {
LLVMContext &Context) {
// If this memory location has been recently stored, use the stored value: it
// is the most up-to-date.
DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
@ -2158,7 +2159,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
return false;
LLVMContext *Context = F->getContext();
LLVMContext &Context = F->getContext();
CallStack.push_back(F);
@ -2192,20 +2193,20 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
Constant *Val = getVal(Values, SI->getOperand(0));
MutatedMemory[Ptr] = Val;
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
InstResult = Context->getConstantExpr(BO->getOpcode(),
InstResult = Context.getConstantExpr(BO->getOpcode(),
getVal(Values, BO->getOperand(0)),
getVal(Values, BO->getOperand(1)));
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
InstResult = Context->getConstantExprCompare(CI->getPredicate(),
InstResult = Context.getConstantExprCompare(CI->getPredicate(),
getVal(Values, CI->getOperand(0)),
getVal(Values, CI->getOperand(1)));
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
InstResult = Context->getConstantExprCast(CI->getOpcode(),
InstResult = Context.getConstantExprCast(CI->getOpcode(),
getVal(Values, CI->getOperand(0)),
CI->getType());
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
InstResult =
Context->getConstantExprSelect(getVal(Values, SI->getOperand(0)),
Context.getConstantExprSelect(getVal(Values, SI->getOperand(0)),
getVal(Values, SI->getOperand(1)),
getVal(Values, SI->getOperand(2)));
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
@ -2215,7 +2216,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
i != e; ++i)
GEPOps.push_back(getVal(Values, *i));
InstResult =
Context->getConstantExprGetElementPtr(P, &GEPOps[0], GEPOps.size());
Context.getConstantExprGetElementPtr(P, &GEPOps[0], GEPOps.size());
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
if (LI->isVolatile()) return false; // no volatile accesses.
InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
@ -2224,9 +2225,9 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
const Type *Ty = AI->getType()->getElementType();
AllocaTmps.push_back(new GlobalVariable(*Context, Ty, false,
AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
GlobalValue::InternalLinkage,
Context->getUndef(Ty),
Context.getUndef(Ty),
AI->getName()));
InstResult = AllocaTmps.back();
} else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
@ -2368,7 +2369,7 @@ static bool EvaluateStaticConstructor(Function *F) {
// silly, e.g. storing the address of the alloca somewhere and using it
// later. Since this is undefined, we'll just make it be null.
if (!Tmp->use_empty())
Tmp->replaceAllUsesWith(F->getContext()->getNullValue(Tmp->getType()));
Tmp->replaceAllUsesWith(F->getContext().getNullValue(Tmp->getType()));
delete Tmp;
}
@ -2412,7 +2413,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
if (!MadeChange) return false;
GCL = InstallGlobalCtors(GCL, Ctors, Context);
GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
return true;
}
@ -2476,7 +2477,6 @@ bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
bool GlobalOpt::runOnModule(Module &M) {
bool Changed = false;
Context = &M.getContext();
// Try to find the llvm.globalctors list.
GlobalVariable *GlobalCtors = FindGlobalCtors(M);

View File

@ -56,8 +56,6 @@ bool IPCP::runOnModule(Module &M) {
bool Changed = false;
bool LocalChange = true;
Context = &M.getContext();
// FIXME: instead of using smart algorithms, we just iterate until we stop
// making changes.
while (LocalChange) {
@ -136,7 +134,7 @@ bool IPCP::PropagateConstantsIntoArguments(Function &F) {
continue;
Value *V = ArgumentConstants[i].first;
if (V == 0) V = Context->getUndef(AI->getType());
if (V == 0) V = F.getContext().getUndef(AI->getType());
AI->replaceAllUsesWith(V);
++NumArgumentsProped;
MadeChange = true;
@ -161,15 +159,17 @@ bool IPCP::PropagateConstantReturn(Function &F) {
// propagate information about its results into callers.
if (F.mayBeOverridden())
return false;
LLVMContext &Context = F.getContext();
// Check to see if this function returns a constant.
SmallVector<Value *,4> RetVals;
const StructType *STy = dyn_cast<StructType>(F.getReturnType());
if (STy)
for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
RetVals.push_back(Context->getUndef(STy->getElementType(i)));
RetVals.push_back(Context.getUndef(STy->getElementType(i)));
else
RetVals.push_back(Context->getUndef(F.getReturnType()));
RetVals.push_back(Context.getUndef(F.getReturnType()));
unsigned NumNonConstant = 0;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)

View File

@ -44,8 +44,6 @@ static RegisterPass<IndMemRemPass>
X("indmemrem","Indirect Malloc and Free Removal");
bool IndMemRemPass::runOnModule(Module &M) {
Context = &M.getContext();
// In theory, all direct calls of malloc and free should be promoted
// to intrinsics. Therefore, this goes through and finds where the
// address of free or malloc are taken and replaces those with bounce

View File

@ -102,8 +102,6 @@ bool InternalizePass::runOnModule(Module &M) {
CallGraph *CG = getAnalysisIfAvailable<CallGraph>();
CallGraphNode *ExternalNode = CG ? CG->getExternalCallingNode() : 0;
Context = &M.getContext();
if (ExternalNames.empty()) {
// Return if we're not in 'all but main' mode and have no external api
if (!AllButMain)

View File

@ -134,8 +134,6 @@ static RegisterPass<LowerSetJmp> X("lowersetjmp", "Lower Set Jump");
bool LowerSetJmp::runOnModule(Module& M) {
bool Changed = false;
Context = &M.getContext();
// These are what the functions are called.
Function* SetJmp = M.getFunction("llvm.setjmp");
Function* LongJmp = M.getFunction("llvm.longjmp");
@ -203,8 +201,9 @@ bool LowerSetJmp::runOnModule(Module& M) {
// This function is always successful, unless it isn't.
bool LowerSetJmp::doInitialization(Module& M)
{
const Type *SBPTy = Context->getPointerTypeUnqual(Type::Int8Ty);
const Type *SBPPTy = Context->getPointerTypeUnqual(SBPTy);
LLVMContext &Context = M.getContext();
const Type *SBPTy = Context.getPointerTypeUnqual(Type::Int8Ty);
const Type *SBPPTy = Context.getPointerTypeUnqual(SBPTy);
// N.B. See llvm/runtime/GCCLibraries/libexception/SJLJ-Exception.h for
// a description of the following library functions.
@ -260,7 +259,7 @@ bool LowerSetJmp::IsTransformableFunction(const std::string& Name) {
// throwing the exception for us.
void LowerSetJmp::TransformLongJmpCall(CallInst* Inst)
{
const Type* SBPTy = Context->getPointerTypeUnqual(Type::Int8Ty);
const Type* SBPTy = Inst->getContext().getPointerTypeUnqual(Type::Int8Ty);
// Create the call to "__llvm_sjljeh_throw_longjmp". This takes the
// same parameters as "longjmp", except that the buffer is cast to a
@ -291,7 +290,8 @@ void LowerSetJmp::TransformLongJmpCall(CallInst* Inst)
Removed = &BB->back();
// If the removed instructions have any users, replace them now.
if (!Removed->use_empty())
Removed->replaceAllUsesWith(Context->getUndef(Removed->getType()));
Removed->replaceAllUsesWith(
Inst->getContext().getUndef(Removed->getType()));
Removed->eraseFromParent();
} while (Removed != Inst);
@ -312,7 +312,7 @@ AllocaInst* LowerSetJmp::GetSetJmpMap(Function* Func)
assert(Inst && "Couldn't find even ONE instruction in entry block!");
// Fill in the alloca and call to initialize the SJ map.
const Type *SBPTy = Context->getPointerTypeUnqual(Type::Int8Ty);
const Type *SBPTy = Func->getContext().getPointerTypeUnqual(Type::Int8Ty);
AllocaInst* Map = new AllocaInst(SBPTy, 0, "SJMap", Inst);
CallInst::Create(InitSJMap, Map, "", Inst);
return SJMap[Func] = Map;
@ -378,12 +378,12 @@ void LowerSetJmp::TransformSetJmpCall(CallInst* Inst)
Function* Func = ABlock->getParent();
// Add this setjmp to the setjmp map.
const Type* SBPTy = Context->getPointerTypeUnqual(Type::Int8Ty);
const Type* SBPTy = Inst->getContext().getPointerTypeUnqual(Type::Int8Ty);
CastInst* BufPtr =
new BitCastInst(Inst->getOperand(1), SBPTy, "SBJmpBuf", Inst);
std::vector<Value*> Args =
make_vector<Value*>(GetSetJmpMap(Func), BufPtr,
Context->getConstantInt(Type::Int32Ty,
Inst->getContext().getConstantInt(Type::Int32Ty,
SetJmpIDMap[Func]++), 0);
CallInst::Create(AddSJToMap, Args.begin(), Args.end(), "", Inst);
@ -430,11 +430,11 @@ void LowerSetJmp::TransformSetJmpCall(CallInst* Inst)
PHINode* PHI = PHINode::Create(Type::Int32Ty, "SetJmpReturn", Inst);
// Coming from a call to setjmp, the return is 0.
PHI->addIncoming(Context->getNullValue(Type::Int32Ty), ABlock);
PHI->addIncoming(Inst->getContext().getNullValue(Type::Int32Ty), ABlock);
// Add the case for this setjmp's number...
SwitchValuePair SVP = GetSJSwitch(Func, GetRethrowBB(Func));
SVP.first->addCase(Context->getConstantInt(Type::Int32Ty,
SVP.first->addCase(Inst->getContext().getConstantInt(Type::Int32Ty,
SetJmpIDMap[Func] - 1),
SetJmpContBlock);

View File

@ -520,7 +520,7 @@ static void AliasGToF(Function *F, Function *G) {
GlobalAlias *GA = new GlobalAlias(
G->getType(), G->getLinkage(), "",
F->getContext()->getConstantExprBitCast(F, G->getType()), G->getParent());
F->getContext().getConstantExprBitCast(F, G->getType()), G->getParent());
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
GA->takeName(G);
GA->setVisibility(G->getVisibility());
@ -616,8 +616,6 @@ static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
bool MergeFunctions::runOnModule(Module &M) {
bool Changed = false;
Context = &M.getContext();
std::map<unsigned long, std::vector<Function *> > FnMap;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {

View File

@ -141,8 +141,6 @@ Function* PartialInliner::unswitchFunction(Function* F) {
}
bool PartialInliner::runOnModule(Module& M) {
Context = &M.getContext();
std::vector<Function*> worklist;
worklist.reserve(M.size());
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)

View File

@ -108,8 +108,6 @@ SpecializeFunction(Function* F,
bool PartSpec::runOnModule(Module &M) {
Context = &M.getContext();
bool Changed = false;
for (Module::iterator I = M.begin(); I != M.end(); ++I) {
Function &F = *I;

View File

@ -243,7 +243,7 @@ void PruneEH::DeleteBasicBlock(BasicBlock *BB) {
} else if (InvokeInst *II = dyn_cast<InvokeInst>(I))
CGN->removeCallEdgeFor(II);
if (!I->use_empty())
I->replaceAllUsesWith(Context->getUndef(I->getType()));
I->replaceAllUsesWith(BB->getContext().getUndef(I->getType()));
}
// Get the list of successors of this block.

View File

@ -70,8 +70,8 @@ ModulePass *llvm::createRaiseAllocationsPass() {
// function into the appropriate instruction.
//
void RaiseAllocations::doInitialization(Module &M) {
Context = &M.getContext();
LLVMContext &Context = M.getContext();
// Get Malloc and free prototypes if they exist!
MallocFunc = M.getFunction("malloc");
if (MallocFunc) {
@ -79,7 +79,7 @@ void RaiseAllocations::doInitialization(Module &M) {
// Get the expected prototype for malloc
const FunctionType *Malloc1Type =
Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty),
Context.getFunctionType(Context.getPointerTypeUnqual(Type::Int8Ty),
std::vector<const Type*>(1, Type::Int64Ty), false);
// Chck to see if we got the expected malloc
@ -87,14 +87,14 @@ void RaiseAllocations::doInitialization(Module &M) {
// Check to see if the prototype is wrong, giving us i8*(i32) * malloc
// This handles the common declaration of: 'void *malloc(unsigned);'
const FunctionType *Malloc2Type =
Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty),
Context.getFunctionType(Context.getPointerTypeUnqual(Type::Int8Ty),
std::vector<const Type*>(1, Type::Int32Ty), false);
if (TyWeHave != Malloc2Type) {
// Check to see if the prototype is missing, giving us
// i8*(...) * malloc
// This handles the common declaration of: 'void *malloc();'
const FunctionType *Malloc3Type =
Context->getFunctionType(Context->getPointerTypeUnqual(Type::Int8Ty),
Context.getFunctionType(Context.getPointerTypeUnqual(Type::Int8Ty),
true);
if (TyWeHave != Malloc3Type)
// Give up
@ -108,21 +108,21 @@ void RaiseAllocations::doInitialization(Module &M) {
const FunctionType* TyWeHave = FreeFunc->getFunctionType();
// Get the expected prototype for void free(i8*)
const FunctionType *Free1Type = Context->getFunctionType(Type::VoidTy,
std::vector<const Type*>(1, Context->getPointerTypeUnqual(Type::Int8Ty)),
const FunctionType *Free1Type = Context.getFunctionType(Type::VoidTy,
std::vector<const Type*>(1, Context.getPointerTypeUnqual(Type::Int8Ty)),
false);
if (TyWeHave != Free1Type) {
// Check to see if the prototype was forgotten, giving us
// void (...) * free
// This handles the common forward declaration of: 'void free();'
const FunctionType* Free2Type = Context->getFunctionType(Type::VoidTy,
const FunctionType* Free2Type = Context.getFunctionType(Type::VoidTy,
true);
if (TyWeHave != Free2Type) {
// One last try, check to see if we can find free as
// int (...)* free. This handles the case where NOTHING was declared.
const FunctionType* Free3Type = Context->getFunctionType(Type::Int32Ty,
const FunctionType* Free3Type = Context.getFunctionType(Type::Int32Ty,
true);
if (TyWeHave != Free3Type) {
@ -143,6 +143,8 @@ void RaiseAllocations::doInitialization(Module &M) {
bool RaiseAllocations::runOnModule(Module &M) {
// Find the malloc/free prototypes...
doInitialization(M);
LLVMContext &Context = M.getContext();
bool Changed = false;
@ -222,7 +224,7 @@ bool RaiseAllocations::runOnModule(Module &M) {
Value *Source = *CS.arg_begin();
if (!isa<PointerType>(Source->getType()))
Source = new IntToPtrInst(Source,
Context->getPointerTypeUnqual(Type::Int8Ty),
Context.getPointerTypeUnqual(Type::Int8Ty),
"FreePtrCast", I);
new FreeInst(Source, I);
@ -233,7 +235,7 @@ bool RaiseAllocations::runOnModule(Module &M) {
// Delete the old call site
if (I->getType() != Type::VoidTy)
I->replaceAllUsesWith(Context->getUndef(I->getType()));
I->replaceAllUsesWith(Context.getUndef(I->getType()));
I->eraseFromParent();
Changed = true;
++NumRaised;

View File

@ -42,7 +42,6 @@ X("strip-dead-prototypes", "Strip Unused Function Prototypes");
bool StripDeadPrototypesPass::runOnModule(Module &M) {
bool MadeChange = false;
Context = &M.getContext();
// Erase dead function prototypes.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {

View File

@ -369,7 +369,6 @@ bool StripDebugInfo(Module &M) {
}
bool StripSymbols::runOnModule(Module &M) {
Context = &M.getContext();
bool Changed = false;
Changed |= StripDebugInfo(M);
if (!OnlyDebugInfo)

View File

@ -230,7 +230,8 @@ Function *SRETPromotion::cloneFunctionBody(Function *F,
AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
FunctionType *NFTy = Context->getFunctionType(STy, Params, FTy->isVarArg());
FunctionType *NFTy =
F->getContext().getFunctionType(STy, Params, FTy->isVarArg());
Function *NF = Function::Create(NFTy, F->getLinkage());
NF->takeName(F);
NF->copyAttributesFrom(F);

View File

@ -63,10 +63,10 @@ bool FunctionProfiler::runOnModule(Module &M) {
if (!I->isDeclaration())
++NumFunctions;
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumFunctions);
const Type *ATy = M.getContext().getArrayType(Type::Int32Ty, NumFunctions);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Context->getNullValue(ATy), "FuncProfCounters");
M.getContext().getNullValue(ATy), "FuncProfCounters");
// Instrument all of the functions...
unsigned i = 0;
@ -108,10 +108,10 @@ bool BlockProfiler::runOnModule(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
NumBlocks += I->size();
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumBlocks);
const Type *ATy = M.getContext().getArrayType(Type::Int32Ty, NumBlocks);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Context->getNullValue(ATy), "BlockProfCounters");
M.getContext().getNullValue(ATy), "BlockProfCounters");
// Instrument all of the blocks...
unsigned i = 0;

View File

@ -64,10 +64,10 @@ bool EdgeProfiler::runOnModule(Module &M) {
NumEdges += BB->getTerminator()->getNumSuccessors();
}
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumEdges);
const Type *ATy = M.getContext().getArrayType(Type::Int32Ty, NumEdges);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Context->getNullValue(ATy), "EdgeProfCounters");
M.getContext().getNullValue(ATy), "EdgeProfCounters");
// Instrument all of the edges...
unsigned i = 0;

View File

@ -23,10 +23,10 @@
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array) {
LLVMContext *Context = MainFn->getContext();
LLVMContext &Context = MainFn->getContext();
const Type *ArgVTy =
Context->getPointerTypeUnqual(Context->getPointerTypeUnqual(Type::Int8Ty));
const PointerType *UIntPtr = Context->getPointerTypeUnqual(Type::Int32Ty);
Context.getPointerTypeUnqual(Context.getPointerTypeUnqual(Type::Int8Ty));
const PointerType *UIntPtr = Context.getPointerTypeUnqual(Type::Int32Ty);
Module &M = *MainFn->getParent();
Constant *InitFn = M.getOrInsertFunction(FnName, Type::Int32Ty, Type::Int32Ty,
ArgVTy, UIntPtr, Type::Int32Ty,
@ -35,27 +35,27 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
// This could force argc and argv into programs that wouldn't otherwise have
// them, but instead we just pass null values in.
std::vector<Value*> Args(4);
Args[0] = Context->getNullValue(Type::Int32Ty);
Args[1] = Context->getNullValue(ArgVTy);
Args[0] = Context.getNullValue(Type::Int32Ty);
Args[1] = Context.getNullValue(ArgVTy);
// Skip over any allocas in the entry block.
BasicBlock *Entry = MainFn->begin();
BasicBlock::iterator InsertPos = Entry->begin();
while (isa<AllocaInst>(InsertPos)) ++InsertPos;
std::vector<Constant*> GEPIndices(2, Context->getNullValue(Type::Int32Ty));
std::vector<Constant*> GEPIndices(2, Context.getNullValue(Type::Int32Ty));
unsigned NumElements = 0;
if (Array) {
Args[2] = Context->getConstantExprGetElementPtr(Array, &GEPIndices[0],
Args[2] = Context.getConstantExprGetElementPtr(Array, &GEPIndices[0],
GEPIndices.size());
NumElements =
cast<ArrayType>(Array->getType()->getElementType())->getNumElements();
} else {
// If this profiling instrumentation doesn't have a constant array, just
// pass null.
Args[2] = Context->getConstantPointerNull(UIntPtr);
Args[2] = Context.getConstantPointerNull(UIntPtr);
}
Args[3] = Context->getConstantInt(Type::Int32Ty, NumElements);
Args[3] = Context.getConstantInt(Type::Int32Ty, NumElements);
Instruction *InitCall = CallInst::Create(InitFn, Args.begin(), Args.end(),
"newargc", InsertPos);
@ -101,7 +101,7 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
GlobalValue *CounterArray) {
LLVMContext *Context = BB->getContext();
LLVMContext &Context = BB->getContext();
// Insert the increment after any alloca or PHI instructions...
BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
@ -110,16 +110,16 @@ void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
Indices[0] = Context->getNullValue(Type::Int32Ty);
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
Indices[0] = Context.getNullValue(Type::Int32Ty);
Indices[1] = Context.getConstantInt(Type::Int32Ty, CounterNum);
Constant *ElementPtr =
Context->getConstantExprGetElementPtr(CounterArray, &Indices[0],
Context.getConstantExprGetElementPtr(CounterArray, &Indices[0],
Indices.size());
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos);
Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal,
Context->getConstantInt(Type::Int32Ty, 1),
Context.getConstantInt(Type::Int32Ty, 1),
"NewFuncCounter", InsertPos);
new StoreInst(NewVal, ElementPtr, InsertPos);
}

View File

@ -209,16 +209,16 @@ void GlobalRandomCounter::PrepFunction(Function* F) {}
void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext *Context = bb->getContext();
LLVMContext &Context = bb->getContext();
//decrement counter
LoadInst* l = new LoadInst(Counter, "counter", t);
ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
Context->getConstantInt(T, 0),
Context.getConstantInt(T, 0),
"countercc");
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
Value* nv = BinaryOperator::CreateSub(l, Context.getConstantInt(T, 1),
"counternew", t);
new StoreInst(nv, Counter, t);
t->setCondition(s);
@ -283,16 +283,16 @@ void GlobalRandomCounterOpt::PrepFunction(Function* F) {
void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext *Context = bb->getContext();
LLVMContext &Context = bb->getContext();
//decrement counter
LoadInst* l = new LoadInst(AI, "counter", t);
ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
Context->getConstantInt(T, 0),
Context.getConstantInt(T, 0),
"countercc");
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
Value* nv = BinaryOperator::CreateSub(l, Context.getConstantInt(T, 1),
"counternew", t);
new StoreInst(nv, AI, t);
t->setCondition(s);
@ -318,15 +318,15 @@ void CycleCounter::PrepFunction(Function* F) {}
void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext *Context = bb->getContext();
LLVMContext &Context = bb->getContext();
CallInst* c = CallInst::Create(F, "rdcc", t);
BinaryOperator* b =
BinaryOperator::CreateAnd(c, Context->getConstantInt(Type::Int64Ty, rm),
BinaryOperator::CreateAnd(c, Context.getConstantInt(Type::Int64Ty, rm),
"mrdcc", t);
ICmpInst *s = new ICmpInst(t, ICmpInst::ICMP_EQ, b,
Context->getConstantInt(Type::Int64Ty, 0),
Context.getConstantInt(Type::Int64Ty, 0),
"mrdccc");
t->setCondition(s);
@ -352,16 +352,17 @@ void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNu
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
Indices[0] = Context->getNullValue(Type::Int32Ty);
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
Constant *ElementPtr = Context->getConstantExprGetElementPtr(CounterArray,
Indices[0] = BB->getContext().getNullValue(Type::Int32Ty);
Indices[1] = BB->getContext().getConstantInt(Type::Int32Ty, CounterNum);
Constant *ElementPtr =
BB->getContext().getConstantExprGetElementPtr(CounterArray,
&Indices[0], 2);
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
profcode.insert(OldVal);
Value *NewVal = BinaryOperator::CreateAdd(OldVal,
Context->getConstantInt(Type::Int32Ty, 1),
BB->getContext().getConstantInt(Type::Int32Ty, 1),
"NewCounter", InsertPos);
profcode.insert(NewVal);
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
@ -395,7 +396,7 @@ Value* ProfilerRS::Translate(Value* v) {
return i;
} else {
//translate this
Instruction* i2 = i->clone(*Context);
Instruction* i2 = i->clone(v->getContext());
if (i->hasName())
i2->setName("dup_" + i->getName());
TransCache[i] = i2;
@ -482,7 +483,7 @@ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F)
//b:
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
Context->getConstantInt(Type::Int1Ty, true), bbCp);
F.getContext().getConstantInt(Type::Int1Ty, true), bbCp);
//c:
{
TerminatorInst* iB = src->getTerminator();
@ -539,7 +540,7 @@ bool ProfilerRS::runOnFunction(Function& F) {
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
cast<BasicBlock>(
Translate(T->getSuccessor(0))),
Context->getConstantInt(Type::Int1Ty,
F.getContext().getConstantInt(Type::Int1Ty,
true)));
//do whatever is needed now that the function is duplicated

View File

@ -518,7 +518,7 @@ static bool OptimizeCmpExpression(CmpInst *CI) {
BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
InsertedCmp =
CmpInst::Create(*DefBB->getContext(), CI->getOpcode(),
CmpInst::Create(DefBB->getContext(), CI->getOpcode(),
CI->getPredicate(), CI->getOperand(0),
CI->getOperand(1), "", InsertPt);
MadeChange = true;
@ -559,6 +559,8 @@ static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
const Type *AccessTy,
DenseMap<Value*,Value*> &SunkAddrs) {
LLVMContext &Context = MemoryInst->getContext();
// Figure out what addressing mode will be built up for this operation.
SmallVector<Instruction*, 16> AddrModeInsts;
ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
@ -615,7 +617,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
}
if (AddrMode.Scale != 1)
V = BinaryOperator::CreateMul(V, Context->getConstantInt(IntPtrTy,
V = BinaryOperator::CreateMul(V, Context.getConstantInt(IntPtrTy,
AddrMode.Scale),
"sunkaddr", InsertPt);
Result = V;
@ -647,7 +649,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = Context->getConstantInt(IntPtrTy, AddrMode.BaseOffs);
Value *V = Context.getConstantInt(IntPtrTy, AddrMode.BaseOffs);
if (Result)
Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
else
@ -655,7 +657,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
}
if (Result == 0)
SunkAddr = Context->getNullValue(Addr->getType());
SunkAddr = Context.getNullValue(Addr->getType());
else
SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
}

View File

@ -67,7 +67,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
if (!I->use_empty()) // Don't muck with dead instructions...
if (Constant *C = ConstantFoldInstruction(I, Context)) {
if (Constant *C = ConstantFoldInstruction(I, F.getContext())) {
// Add all of the users of this instruction to the worklist, they might
// be constant propagatable now...
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();

View File

@ -797,7 +797,7 @@ Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
// If the block is unreachable, just return undef, since this path
// can't actually occur at runtime.
if (!DT->isReachableFromEntry(BB))
return Phis[BB] = Context->getUndef(orig->getType());
return Phis[BB] = BB->getContext().getUndef(orig->getType());
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
Value *ret = GetValueForBlock(Pred, orig, Phis);
@ -985,7 +985,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// Loading the allocation -> undef.
if (isa<AllocationInst>(DepInst)) {
ValuesPerBlock.push_back(std::make_pair(DepBB,
Context->getUndef(LI->getType())));
DepBB->getContext().getUndef(LI->getType())));
continue;
}
@ -1272,7 +1272,7 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
if (isa<AllocationInst>(DepInst)) {
L->replaceAllUsesWith(Context->getUndef(L->getType()));
L->replaceAllUsesWith(DepInst->getContext().getUndef(L->getType()));
toErase.push_back(L);
NumGVNLoad++;
return true;
@ -1384,9 +1384,9 @@ bool GVN::processInstruction(Instruction *I,
BasicBlock* falseSucc = BI->getSuccessor(1);
if (trueSucc->getSinglePredecessor())
localAvail[trueSucc]->table[condVN] = Context->getTrue();
localAvail[trueSucc]->table[condVN] = trueSucc->getContext().getTrue();
if (falseSucc->getSinglePredecessor())
localAvail[falseSucc]->table[condVN] = Context->getFalse();
localAvail[falseSucc]->table[condVN] = trueSucc->getContext().getFalse();
return false;
@ -1628,7 +1628,7 @@ bool GVN::performPRE(Function& F) {
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
Instruction* PREInstr = CurInst->clone(*Context);
Instruction* PREInstr = CurInst->clone(CurInst->getContext());
bool success = true;
for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
Value *Op = PREInstr->getOperand(i);

View File

@ -800,6 +800,8 @@ void GVNPRE::val_replace(ValueNumberedSet& s, Value* v) {
Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) {
if (V == 0)
return 0;
LLVMContext &Context = V->getContext();
// Unary Operations
if (CastInst* U = dyn_cast<CastInst>(V)) {
@ -862,7 +864,7 @@ Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) {
newOp1, newOp2,
BO->getName()+".expr");
else if (CmpInst* C = dyn_cast<CmpInst>(U))
newVal = CmpInst::Create(*Context, C->getOpcode(),
newVal = CmpInst::Create(Context, C->getOpcode(),
C->getPredicate(),
newOp1, newOp2,
C->getName()+".expr");
@ -1594,6 +1596,7 @@ void GVNPRE::buildsets(Function& F) {
void GVNPRE::insertion_pre(Value* e, BasicBlock* BB,
DenseMap<BasicBlock*, Value*>& avail,
std::map<BasicBlock*, ValueNumberedSet>& new_sets) {
LLVMContext &Context = e->getContext();
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
Value* e2 = avail[*PI];
if (!availableOut[*PI].test(VN.lookup(e2))) {
@ -1680,7 +1683,7 @@ void GVNPRE::insertion_pre(Value* e, BasicBlock* BB,
BO->getName()+".gvnpre",
(*PI)->getTerminator());
else if (CmpInst* C = dyn_cast<CmpInst>(U))
newVal = CmpInst::Create(*Context, C->getOpcode(),
newVal = CmpInst::Create(Context, C->getOpcode(),
C->getPredicate(), s1, s2,
C->getName()+".gvnpre",
(*PI)->getTerminator());

View File

@ -292,7 +292,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = PN->clone(*Context);
PHINode *NewPN = PN->clone(PN->getContext());
NewPN->takeName(PN);
NewPN->insertBefore(PN);
PN->replaceAllUsesWith(NewPN);
@ -713,21 +713,23 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
}
if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
LLVMContext &Context = PH->getContext();
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
PH->getName()+".int", PH);
NewPHI->addIncoming(Context->getConstantInt(Type::Int32Ty, newInitValue),
NewPHI->addIncoming(Context.getConstantInt(Type::Int32Ty, newInitValue),
PH->getIncomingBlock(IncomingEdge));
Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
Context->getConstantInt(Type::Int32Ty,
Context.getConstantInt(Type::Int32Ty,
newIncrValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
// The back edge is edge 1 of newPHI, whatever it may have been in the
// original PHI.
ConstantInt *NewEV = Context->getConstantInt(Type::Int32Ty, intEV);
ConstantInt *NewEV = Context.getConstantInt(Type::Int32Ty, intEV);
Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
@ -743,7 +745,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
RecursivelyDeleteTriviallyDeadInstructions(EC);
// Delete old, floating point, increment instruction.
Incr->replaceAllUsesWith(Context->getUndef(Incr->getType()));
Incr->replaceAllUsesWith(Context.getUndef(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr);
// Replace floating induction variable, if it isn't already deleted.

View File

@ -85,7 +85,8 @@ namespace {
static char ID; // Pass identification, replacement for typeid
InstCombiner() : FunctionPass(&ID) {}
LLVMContext *getContext() { return Context; }
LLVMContext *Context;
LLVMContext *getContext() const { return Context; }
/// AddToWorkList - Add the specified instruction to the worklist if it
/// isn't already in it.
@ -11557,7 +11558,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context))
*Context))
return ReplaceInstUsesWith(LI, V);
if (CE->getOperand(0)->isNullValue()) {
// Insert a new store to null instruction before the load to indicate
@ -13082,6 +13083,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
bool InstCombiner::runOnFunction(Function &F) {
MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
Context = &F.getContext();
bool EverMadeChange = false;

View File

@ -435,7 +435,8 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
<< "' folding condition to '" << BranchDir << "': "
<< *BB->getTerminator();
++NumFolds;
DestBI->setCondition(Context->getConstantInt(Type::Int1Ty, BranchDir));
DestBI->setCondition(BB->getContext().getConstantInt(Type::Int1Ty,
BranchDir));
ConstantFoldTerminator(BB);
return true;
}
@ -564,7 +565,8 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = Context->getUndef(LI->getType());
if (AvailableVal == LI) AvailableVal =
AvailableVal->getContext().getUndef(LI->getType());
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
@ -718,7 +720,7 @@ bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
SuccBB = BI->getSuccessor(PredCst == Context->getFalse());
SuccBB = BI->getSuccessor(PredCst == PredBB->getContext().getFalse());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
@ -756,7 +758,7 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
ConstantInt *PredCst = Context->getConstantInt(Type::Int1Ty, !isAnd);
ConstantInt *PredCst = V->getContext().getConstantInt(Type::Int1Ty, !isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
@ -795,15 +797,15 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
/// result can not be determined, a null pointer is returned.
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
Value *LHS, Value *RHS,
LLVMContext *Context) {
LLVMContext &Context) {
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return Context->getConstantExprCompare(pred, CLHS, CRHS);
return Context.getConstantExprCompare(pred, CLHS, CRHS);
if (LHS == RHS)
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
return ICmpInst::isTrueWhenEqual(pred) ?
Context->getTrue() : Context->getFalse();
Context.getTrue() : Context.getFalse();
return 0;
}
@ -829,7 +831,7 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PredVal = PN->getIncomingValue(i);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
RHS, Context);
RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
@ -931,7 +933,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone(*Context);
Instruction *New = BI->clone(BI->getContext());
New->setName(BI->getNameStart());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;

View File

@ -475,6 +475,8 @@ void LICM::sink(Instruction &I) {
++NumSunk;
Changed = true;
LLVMContext &Context = I.getContext();
// The case where there is only a single exit node of this loop is common
// enough that we handle it as a special (more efficient) case. It is more
// efficient to handle because there are no PHI nodes that need to be placed.
@ -483,7 +485,7 @@ void LICM::sink(Instruction &I) {
// Instruction is not used, just delete it.
CurAST->deleteValue(&I);
if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
I.replaceAllUsesWith(Context->getUndef(I.getType()));
I.replaceAllUsesWith(Context.getUndef(I.getType()));
I.eraseFromParent();
} else {
// Move the instruction to the start of the exit block, after any PHI
@ -497,7 +499,7 @@ void LICM::sink(Instruction &I) {
// The instruction is actually dead if there ARE NO exit blocks.
CurAST->deleteValue(&I);
if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
I.replaceAllUsesWith(Context->getUndef(I.getType()));
I.replaceAllUsesWith(Context.getUndef(I.getType()));
I.eraseFromParent();
} else {
// Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
@ -570,7 +572,7 @@ void LICM::sink(Instruction &I) {
ExitBlock->getInstList().insert(InsertPt, &I);
New = &I;
} else {
New = I.clone(*Context);
New = I.clone(Context);
CurAST->copyValue(&I, New);
if (!I.getName().empty())
New->setName(I.getName()+".le");
@ -768,7 +770,7 @@ void LICM::PromoteValuesInLoop() {
PromotedAllocas.reserve(PromotedValues.size());
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
PromotedAllocas.push_back(PromotedValues[i].first);
PromoteMemToReg(PromotedAllocas, *DT, *DF, Context, CurAST);
PromoteMemToReg(PromotedAllocas, *DT, *DF, Preheader->getContext(), CurAST);
}
/// FindPromotableValuesInLoop - Check the current loop for stores to definite

View File

@ -294,15 +294,15 @@ static bool isUsedOutsideLoop(Value *V, Loop *L) {
// Return V+1
static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt,
LLVMContext *Context) {
Constant *One = Context->getConstantInt(V->getType(), 1, Sign);
LLVMContext &Context) {
Constant *One = Context.getConstantInt(V->getType(), 1, Sign);
return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt);
}
// Return V-1
static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt,
LLVMContext *Context) {
Constant *One = Context->getConstantInt(V->getType(), 1, Sign);
LLVMContext &Context) {
Constant *One = Context.getConstantInt(V->getType(), 1, Sign);
return BinaryOperator::CreateSub(V, One, "lsp", InsertPt);
}
@ -493,6 +493,8 @@ bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) {
EBR->setSuccessor(1, T);
}
LLVMContext &Context = Op.getContext();
// New upper and lower bounds.
Value *NLB = NULL;
Value *NUB = NULL;
@ -879,6 +881,8 @@ bool LoopIndexSplit::splitLoop() {
BasicBlock *ExitingBlock = ExitCondition->getParent();
if (!cleanBlock(ExitingBlock)) return false;
LLVMContext &Context = Header->getContext();
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BranchInst *BR = dyn_cast<BranchInst>((*I)->getTerminator());

View File

@ -238,7 +238,7 @@ bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
// This is not a PHI instruction. Insert its clone into original pre-header.
// If this instruction is using a value from same basic block then
// update it to use value from cloned instruction.
Instruction *C = In->clone(*Context);
Instruction *C = In->clone(In->getContext());
C->setName(In->getName());
OrigPreHeader->getInstList().push_back(C);

View File

@ -1576,7 +1576,9 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV *const &Stride,
BasicBlock *LatchBlock = L->getLoopLatch();
Instruction *IVIncInsertPt = LatchBlock->getTerminator();
Value *CommonBaseV = Context->getNullValue(ReplacedTy);
LLVMContext &Context = Preheader->getContext();
Value *CommonBaseV = Context.getNullValue(ReplacedTy);
const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
@ -1859,6 +1861,8 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
if (!SC) return Cond;
LLVMContext &Context = Cond->getContext();
ICmpInst::Predicate Predicate = Cond->getPredicate();
int64_t CmpSSInt = SC->getValue()->getSExtValue();
unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
@ -1942,7 +1946,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
NewCmpTy = NewCmpLHS->getType();
NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
const Type *NewCmpIntTy = Context->getIntegerType(NewTyBits);
const Type *NewCmpIntTy = Context.getIntegerType(NewTyBits);
if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
// Check if it is possible to rewrite it using
// an iv / stride of a smaller integer type.
@ -1987,10 +1991,10 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
NewStride = &IU->StrideOrder[i];
if (!isa<PointerType>(NewCmpTy))
NewCmpRHS = Context->getConstantInt(NewCmpTy, NewCmpVal);
NewCmpRHS = Context.getConstantInt(NewCmpTy, NewCmpVal);
else {
Constant *CI = Context->getConstantInt(NewCmpIntTy, NewCmpVal);
NewCmpRHS = Context->getConstantExprIntToPtr(CI, NewCmpTy);
Constant *CI = Context.getConstantInt(NewCmpIntTy, NewCmpVal);
NewCmpRHS = Context.getConstantExprIntToPtr(CI, NewCmpTy);
}
NewOffset = TyBits == NewTyBits
? SE->getMulExpr(CondUse->getOffset(),
@ -2171,6 +2175,8 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return;
LLVMContext &Context = L->getHeader()->getContext();
for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
++Stride) {
@ -2233,7 +2239,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
if (!Init) continue;
Constant *NewInit = Context->getConstantFP(DestTy, Init->getZExtValue());
Constant *NewInit = Context.getConstantFP(DestTy, Init->getZExtValue());
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
@ -2257,7 +2263,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
/* create new increment. '++d' in above example. */
Constant *CFP = Context->getConstantFP(DestTy, C->getZExtValue());
Constant *CFP = Context.getConstantFP(DestTy, C->getZExtValue());
BinaryOperator *NewIncr =
BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
Instruction::FAdd : Instruction::FSub,
@ -2293,6 +2299,8 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
// one register value.
BasicBlock *LatchBlock = L->getLoopLatch();
BasicBlock *ExitingBlock = L->getExitingBlock();
LLVMContext &Context = LatchBlock->getContext();
if (!ExitingBlock)
// Multiple exits, just look at the exit in the latch block if there is one.
ExitingBlock = LatchBlock;
@ -2382,7 +2390,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
Cond->moveBefore(TermBr);
} else {
// Otherwise, clone the terminating condition and insert into the loopend.
Cond = cast<ICmpInst>(Cond->clone(*Context));
Cond = cast<ICmpInst>(Cond->clone(Context));
Cond->setName(L->getHeader()->getName() + ".termcond");
LatchBlock->getInstList().insert(TermBr, Cond);
@ -2424,6 +2432,8 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
if (!ExitingBlock)
return; // More than one block exiting!
LLVMContext &Context = ExitingBlock->getContext();
// Okay, we've computed the exiting block. See what condition causes us to
// exit.
//
@ -2496,7 +2506,7 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
Value *startVal = phi->getIncomingValue(inBlock);
Value *endVal = Cond->getOperand(1);
// FIXME check for case where both are constant
Constant* Zero = Context->getConstantInt(Cond->getOperand(1)->getType(), 0);
Constant* Zero = Context.getConstantInt(Cond->getOperand(1)->getType(), 0);
BinaryOperator *NewStartVal =
BinaryOperator::Create(Instruction::Sub, endVal, startVal,
"tmp", PreInsertPt);

View File

@ -216,6 +216,7 @@ bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
/// and profitable.
bool LoopUnswitch::processCurrentLoop() {
bool Changed = false;
LLVMContext &Context = currentLoop->getHeader()->getContext();
// Loop over all of the basic blocks in the loop. If we find an interior
// block that is branching on a loop-invariant condition, we can unswitch this
@ -233,7 +234,7 @@ bool LoopUnswitch::processCurrentLoop() {
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
Context->getTrue())) {
Context.getTrue())) {
++NumBranches;
return true;
}
@ -263,7 +264,7 @@ bool LoopUnswitch::processCurrentLoop() {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
Context->getTrue())) {
Context.getTrue())) {
++NumSelects;
return true;
}
@ -337,6 +338,7 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
BasicBlock **LoopExit) {
BasicBlock *Header = currentLoop->getHeader();
TerminatorInst *HeaderTerm = Header->getTerminator();
LLVMContext &Context = Header->getContext();
BasicBlock *LoopExitBB = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
@ -351,10 +353,10 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
// this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
if (Val) *Val = Context->getTrue();
if (Val) *Val = Context.getTrue();
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
if (Val) *Val = Context->getFalse();
if (Val) *Val = Context.getFalse();
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
// If this isn't a switch on Cond, we can't handle it.
@ -510,7 +512,7 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
Value *BranchVal = LIC;
if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
else if (Val != Context->getTrue())
else if (Val != Val->getContext().getTrue())
// We want to enter the new loop when the condition is true.
std::swap(TrueDest, FalseDest);
@ -818,7 +820,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
// Anything that uses the instructions in this basic block should have their
// uses replaced with undefs.
if (!I->use_empty())
I->replaceAllUsesWith(Context->getUndef(I->getType()));
I->replaceAllUsesWith(I->getContext().getUndef(I->getType()));
}
// If this is the edge to the header block for a loop, remove the loop and
@ -899,6 +901,8 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
// selects, switches.
std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
std::vector<Instruction*> Worklist;
LLVMContext &Context = Val->getContext();
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
@ -907,7 +911,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
if (IsEqual)
Replacement = Val;
else
Replacement = Context->getConstantInt(Type::Int1Ty,
Replacement = Context.getConstantInt(Type::Int1Ty,
!cast<ConstantInt>(Val)->getZExtValue());
for (unsigned i = 0, e = Users.size(); i != e; ++i)
@ -947,7 +951,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Instruction* OldTerm = Old->getTerminator();
BranchInst::Create(Split, SISucc,
Context->getTrue(), OldTerm);
Context.getTrue(), OldTerm);
LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
Old->getTerminator()->eraseFromParent();
@ -988,7 +992,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
Worklist.pop_back();
// Simple constant folding.
if (Constant *C = ConstantFoldInstruction(I, Context)) {
if (Constant *C = ConstantFoldInstruction(I, I->getContext())) {
ReplaceUsesOfWith(I, C, Worklist, L, LPM);
continue;
}

View File

@ -36,7 +36,7 @@ STATISTIC(NumMemSetInfer, "Number of memsets inferred");
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
static Value *isBytewiseValue(Value *V, LLVMContext& Context) {
// All byte-wide stores are splatable, even of arbitrary variables.
if (V->getType() == Type::Int8Ty) return V;
@ -44,9 +44,9 @@ static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::FloatTy)
V = Context->getConstantExprBitCast(CFP, Type::Int32Ty);
V = Context.getConstantExprBitCast(CFP, Type::Int32Ty);
if (CFP->getType() == Type::DoubleTy)
V = Context->getConstantExprBitCast(CFP, Type::Int64Ty);
V = Context.getConstantExprBitCast(CFP, Type::Int64Ty);
// Don't handle long double formats, which have strange constraints.
}
@ -69,7 +69,7 @@ static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
if (Val != Val2)
return 0;
}
return Context->getConstantInt(Val);
return Context.getConstantInt(Val);
}
}
@ -346,7 +346,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
// Ensure that the value being stored is something that can be memset'able a
// byte at a time like "0" or "-1" or any width, as well as things like
// 0xA0A0A0A0 and 0.0.
Value *ByteVal = isBytewiseValue(SI->getOperand(0), Context);
Value *ByteVal = isBytewiseValue(SI->getOperand(0), SI->getContext());
if (!ByteVal)
return false;
@ -385,7 +385,8 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
if (NextStore->isVolatile()) break;
// Check to see if this stored value is of the same byte-splattable value.
if (ByteVal != isBytewiseValue(NextStore->getOperand(0), Context))
if (ByteVal != isBytewiseValue(NextStore->getOperand(0),
NextStore->getContext()))
break;
// Check to see if this store is to a constant offset from the start ptr.
@ -439,15 +440,17 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
StartPtr = Range.StartPtr;
// Cast the start ptr to be i8* as memset requires.
const Type *i8Ptr = Context->getPointerTypeUnqual(Type::Int8Ty);
const Type *i8Ptr = SI->getContext().getPointerTypeUnqual(Type::Int8Ty);
if (StartPtr->getType() != i8Ptr)
StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
InsertPt);
Value *Ops[] = {
StartPtr, ByteVal, // Start, value
Context->getConstantInt(Type::Int64Ty, Range.End-Range.Start), // size
Context->getConstantInt(Type::Int32Ty, Range.Alignment) // align
// size
SI->getContext().getConstantInt(Type::Int64Ty, Range.End-Range.Start),
// align
SI->getContext().getConstantInt(Type::Int32Ty, Range.Alignment)
};
Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
DEBUG(cerr << "Replace stores:\n";

View File

@ -1664,7 +1664,7 @@ namespace {
TopBB(TopBB),
TopInst(NULL),
modified(modified),
Context(TopBB->getContext())
Context(&TopBB->getContext())
{
assert(Top && "VRPSolver created for unreachable basic block.");
}
@ -1681,7 +1681,7 @@ namespace {
TopBB(TopInst->getParent()),
TopInst(TopInst),
modified(modified),
Context(TopInst->getParent()->getContext())
Context(&TopInst->getContext())
{
assert(Top && "VRPSolver created for unreachable basic block.");
assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
@ -2267,6 +2267,7 @@ namespace {
std::vector<DomTreeDFS::Node *> WorkList;
LLVMContext *Context;
public:
static char ID; // Pass identification, replacement for typeid
PredicateSimplifier() : FunctionPass(&ID) {}
@ -2402,6 +2403,7 @@ namespace {
DominatorTree *DT = &getAnalysis<DominatorTree>();
DTDFS = new DomTreeDFS(DT);
TargetData *TD = &getAnalysis<TargetData>();
Context = &F.getContext();
DOUT << "Entering Function: " << F.getName() << "\n";
@ -2447,7 +2449,7 @@ namespace {
return;
}
LLVMContext *Context = BI.getParent()->getContext();
LLVMContext *Context = &BI.getContext();
for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
I != E; ++I) {
@ -2505,7 +2507,7 @@ namespace {
void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
VRP.add(AI.getParent()->getContext()->getNullValue(AI.getType()),
VRP.add(AI.getContext().getNullValue(AI.getType()),
&AI, ICmpInst::ICMP_NE);
VRP.solve();
}
@ -2516,7 +2518,7 @@ namespace {
if (isa<Constant>(Ptr)) return;
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
VRP.add(LI.getParent()->getContext()->getNullValue(Ptr->getType()),
VRP.add(LI.getContext().getNullValue(Ptr->getType()),
Ptr, ICmpInst::ICMP_NE);
VRP.solve();
}
@ -2526,14 +2528,14 @@ namespace {
if (isa<Constant>(Ptr)) return;
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
VRP.add(SI.getParent()->getContext()->getNullValue(Ptr->getType()),
VRP.add(SI.getContext().getNullValue(Ptr->getType()),
Ptr, ICmpInst::ICMP_NE);
VRP.solve();
}
void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
LLVMContext *Context = SI.getParent()->getContext();
LLVMContext *Context = &SI.getContext();
uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
@ -2545,7 +2547,7 @@ namespace {
void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
LLVMContext *Context = ZI.getParent()->getContext();
LLVMContext *Context = &ZI.getContext();
uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
@ -2564,7 +2566,7 @@ namespace {
case Instruction::SDiv: {
Value *Divisor = BO.getOperand(1);
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
VRP.add(BO.getParent()->getContext()->getNullValue(Divisor->getType()),
VRP.add(BO.getContext().getNullValue(Divisor->getType()),
Divisor, ICmpInst::ICMP_NE);
VRP.solve();
break;
@ -2638,7 +2640,7 @@ namespace {
Pred = IC.getPredicate();
LLVMContext *Context = IC.getParent()->getContext();
LLVMContext *Context = &IC.getContext();
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
ConstantInt *NextVal = 0;

View File

@ -200,8 +200,8 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
///
static Instruction *LowerNegateToMultiply(Instruction *Neg,
std::map<AssertingVH<>, unsigned> &ValueRankMap,
LLVMContext *Context) {
Constant *Cst = Context->getAllOnesValue(Neg->getType());
LLVMContext &Context) {
Constant *Cst = Neg->getContext().getAllOnesValue(Neg->getType());
Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
ValueRankMap.erase(Neg);
@ -256,6 +256,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
unsigned Opcode = I->getOpcode();
LLVMContext &Context = I->getContext();
// First step, linearize the expression if it is in ((A+B)+(C+D)) form.
BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
@ -284,8 +285,8 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the leaves out.
I->setOperand(0, Context->getUndef(I->getType()));
I->setOperand(1, Context->getUndef(I->getType()));
I->setOperand(0, Context.getUndef(I->getType()));
I->setOperand(1, Context.getUndef(I->getType()));
return;
} else {
// Turn X+(Y+Z) -> (Y+Z)+X
@ -320,7 +321,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the RHS leaf out.
I->setOperand(1, Context->getUndef(I->getType()));
I->setOperand(1, Context.getUndef(I->getType()));
}
// RewriteExprTree - Now that the operands for this expression tree are
@ -373,7 +374,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(LLVMContext *Context, Value *V, Instruction *BI) {
static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
@ -402,12 +403,12 @@ static Value *NegateValue(LLVMContext *Context, Value *V, Instruction *BI) {
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
//
return BinaryOperator::CreateNeg(*Context, V, V->getName() + ".neg", BI);
return BinaryOperator::CreateNeg(Context, V, V->getName() + ".neg", BI);
}
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
/// X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(LLVMContext *Context, Instruction *Sub) {
static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
// If this is a negation, we can't split it up!
if (BinaryOperator::isNeg(Sub))
return false;
@ -431,7 +432,7 @@ static bool ShouldBreakUpSubtract(LLVMContext *Context, Instruction *Sub) {
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static Instruction *BreakUpSubtract(LLVMContext *Context, Instruction *Sub,
static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
std::map<AssertingVH<>, unsigned> &ValueRankMap) {
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
@ -458,16 +459,16 @@ static Instruction *BreakUpSubtract(LLVMContext *Context, Instruction *Sub,
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl,
std::map<AssertingVH<>, unsigned> &ValueRankMap,
LLVMContext *Context) {
LLVMContext &Context) {
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
(Shl->hasOneUse() &&
(isReassociableOp(Shl->use_back(), Instruction::Mul) ||
isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Constant *MulCst = Context->getConstantInt(Shl->getType(), 1);
Constant *MulCst = Context.getConstantInt(Shl->getType(), 1);
MulCst =
Context->getConstantExprShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Context.getConstantExprShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
"", Shl);
@ -562,12 +563,14 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
bool IterateOptimization = false;
if (Ops.size() == 1) return Ops[0].Op;
LLVMContext &Context = I->getContext();
unsigned Opcode = I->getOpcode();
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
Ops.back().Op = Context->getConstantExpr(Opcode, V1, V2);
Ops.back().Op = Context.getConstantExpr(Opcode, V1, V2);
return OptimizeExpression(I, Ops);
}
@ -623,10 +626,10 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
if (FoundX != i) {
if (Opcode == Instruction::And) { // ...&X&~X = 0
++NumAnnihil;
return Context->getNullValue(X->getType());
return Context.getNullValue(X->getType());
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
++NumAnnihil;
return Context->getAllOnesValue(X->getType());
return Context.getAllOnesValue(X->getType());
}
}
}
@ -645,7 +648,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
assert(Opcode == Instruction::Xor);
if (e == 2) {
++NumAnnihil;
return Context->getNullValue(Ops[0].Op->getType());
return Context.getNullValue(Ops[0].Op->getType());
}
// ... X^X -> ...
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
@ -670,7 +673,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
// Remove X and -X from the operand list.
if (Ops.size() == 2) {
++NumAnnihil;
return Context->getNullValue(X->getType());
return Context.getNullValue(X->getType());
} else {
Ops.erase(Ops.begin()+i);
if (i < FoundX)
@ -781,6 +784,8 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
/// ReassociateBB - Inspect all of the instructions in this basic block,
/// reassociating them as we go.
void Reassociate::ReassociateBB(BasicBlock *BB) {
LLVMContext &Context = BB->getContext();
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
Instruction *BI = BBI++;
if (BI->getOpcode() == Instruction::Shl &&

View File

@ -69,7 +69,7 @@ namespace {
CastInst *AllocaInsertionPoint =
CastInst::Create(Instruction::BitCast,
Context->getNullValue(Type::Int32Ty), Type::Int32Ty,
F.getContext().getNullValue(Type::Int32Ty), Type::Int32Ty,
"reg2mem alloca point", I);
// Find the escaped instructions. But don't create stack slots for

View File

@ -645,7 +645,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) {
DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
It = TrackedMultipleRetVals.find(std::make_pair(F, i));
if (It == TrackedMultipleRetVals.end()) break;
if (Value *Val = FindInsertedValue(I.getOperand(0), i, Context))
if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
mergeInValue(It->second, F, getValueState(Val));
}
}
@ -1162,7 +1162,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context)) {
*Context)) {
markConstant(IV, &I, V);
return;
}
@ -1537,7 +1537,7 @@ FunctionPass *llvm::createSCCPPass() {
bool SCCP::runOnFunction(Function &F) {
DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
SCCPSolver Solver;
Solver.setContext(Context);
Solver.setContext(&F.getContext());
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(F.begin());
@ -1577,7 +1577,7 @@ bool SCCP::runOnFunction(Function &F) {
Instruction *I = Insts.back();
Insts.pop_back();
if (!I->use_empty())
I->replaceAllUsesWith(Context->getUndef(I->getType()));
I->replaceAllUsesWith(F.getContext().getUndef(I->getType()));
BB->getInstList().erase(I);
MadeChanges = true;
++NumInstRemoved;
@ -1597,7 +1597,7 @@ bool SCCP::runOnFunction(Function &F) {
continue;
Constant *Const = IV.isConstant()
? IV.getConstant() : Context->getUndef(Inst->getType());
? IV.getConstant() : F.getContext().getUndef(Inst->getType());
DOUT << " Constant: " << *Const << " = " << *Inst;
// Replaces all of the uses of a variable with uses of the constant.
@ -1662,7 +1662,7 @@ static bool AddressIsTaken(GlobalValue *GV) {
}
bool IPSCCP::runOnModule(Module &M) {
Context = &M.getContext();
LLVMContext *Context = &M.getContext();
SCCPSolver Solver;
Solver.setContext(Context);

View File

@ -187,7 +187,7 @@ bool SROA::performPromotion(Function &F) {
if (Allocas.empty()) break;
PromoteMemToReg(Allocas, DT, DF, Context);
PromoteMemToReg(Allocas, DT, DF, F.getContext());
NumPromoted += Allocas.size();
Changed = true;
}
@ -243,7 +243,7 @@ bool SROA::performScalarRepl(Function &F) {
DOUT << " memcpy = " << *TheCopy;
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
AI->replaceAllUsesWith(
Context->getConstantExprBitCast(TheSrc, AI->getType()));
F.getContext().getConstantExprBitCast(TheSrc, AI->getType()));
TheCopy->eraseFromParent(); // Don't mutate the global.
AI->eraseFromParent();
++NumGlobals;
@ -308,7 +308,7 @@ bool SROA::performScalarRepl(Function &F) {
DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
// Create and insert the integer alloca.
const Type *NewTy = Context->getIntegerType(AllocaSize*8);
const Type *NewTy = F.getContext().getIntegerType(AllocaSize*8);
NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
}
@ -331,6 +331,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
std::vector<AllocationInst*> &WorkList) {
DOUT << "Found inst to SROA: " << *AI;
SmallVector<AllocaInst*, 32> ElementAllocas;
LLVMContext &Context = AI->getContext();
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
ElementAllocas.reserve(ST->getNumContainedTypes());
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
@ -372,7 +373,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
// %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
// (Also works for arrays instead of structs)
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Value *Insert = Context->getUndef(LI->getType());
Value *Insert = Context.getUndef(LI->getType());
for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
@ -419,7 +420,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
// expanded itself once the worklist is rerun.
//
SmallVector<Value*, 8> NewArgs;
NewArgs.push_back(Context->getNullValue(Type::Int32Ty));
NewArgs.push_back(Context.getNullValue(Type::Int32Ty));
NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
NewArgs.end(), "", GEPI);
@ -513,6 +514,7 @@ static bool AllUsersAreLoads(Value *Ptr) {
///
void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
AllocaInfo &Info) {
LLVMContext &Context = User->getContext();
if (BitCastInst *C = dyn_cast<BitCastInst>(User))
return isSafeUseOfBitCastedAllocation(C, AI, Info);
@ -532,7 +534,7 @@ void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
// The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
if (I == E ||
I.getOperand() != Context->getNullValue(I.getOperand()->getType())) {
I.getOperand() != Context.getNullValue(I.getOperand()->getType())) {
return MarkUnsafe(Info);
}
@ -728,6 +730,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
// that doesn't have anything to do with the alloca that we are promoting. For
// memset, this Value* stays null.
Value *OtherPtr = 0;
LLVMContext &Context = MI->getContext();
unsigned MemAlignment = MI->getAlignment();
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
if (BCInst == MTI->getRawDest())
@ -765,7 +768,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
const Type *BytePtrTy = MI->getRawDest()->getType();
bool SROADest = MI->getRawDest() == BCInst;
Constant *Zero = Context->getNullValue(Type::Int32Ty);
Constant *Zero = Context.getNullValue(Type::Int32Ty);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// If this is a memcpy/memmove, emit a GEP of the other element address.
@ -773,7 +776,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
unsigned OtherEltAlign = MemAlignment;
if (OtherPtr) {
Value *Idx[2] = { Zero, Context->getConstantInt(Type::Int32Ty, i) };
Value *Idx[2] = { Zero, Context.getConstantInt(Type::Int32Ty, i) };
OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
OtherPtr->getNameStr()+"."+utostr(i),
MI);
@ -820,7 +823,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
Constant *StoreVal;
if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
if (CI->isZero()) {
StoreVal = Context->getNullValue(EltTy); // 0.0, null, 0, <0,0>
StoreVal = Context.getNullValue(EltTy); // 0.0, null, 0, <0,0>
} else {
// If EltTy is a vector type, get the element type.
const Type *ValTy = EltTy->getScalarType();
@ -836,18 +839,18 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
}
// Convert the integer value to the appropriate type.
StoreVal = Context->getConstantInt(TotalVal);
StoreVal = Context.getConstantInt(TotalVal);
if (isa<PointerType>(ValTy))
StoreVal = Context->getConstantExprIntToPtr(StoreVal, ValTy);
StoreVal = Context.getConstantExprIntToPtr(StoreVal, ValTy);
else if (ValTy->isFloatingPoint())
StoreVal = Context->getConstantExprBitCast(StoreVal, ValTy);
StoreVal = Context.getConstantExprBitCast(StoreVal, ValTy);
assert(StoreVal->getType() == ValTy && "Type mismatch!");
// If the requested value was a vector constant, create it.
if (EltTy != ValTy) {
unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
StoreVal = Context->getConstantVector(&Elts[0], NumElts);
StoreVal = Context.getConstantVector(&Elts[0], NumElts);
}
}
new StoreInst(StoreVal, EltPtr, MI);
@ -873,15 +876,15 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
Value *Ops[] = {
SROADest ? EltPtr : OtherElt, // Dest ptr
SROADest ? OtherElt : EltPtr, // Src ptr
Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
Context->getConstantInt(Type::Int32Ty, OtherEltAlign) // Align
Context.getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
Context.getConstantInt(Type::Int32Ty, OtherEltAlign) // Align
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
} else {
assert(isa<MemSetInst>(MI));
Value *Ops[] = {
EltPtr, MI->getOperand(2), // Dest, Value,
Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
Context.getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
Zero // Align
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
@ -898,6 +901,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
SmallVector<AllocaInst*, 32> &NewElts){
// Extract each element out of the integer according to its structure offset
// and store the element value to the individual alloca.
LLVMContext &Context = SI->getContext();
Value *SrcVal = SI->getOperand(0);
const Type *AllocaEltTy = AI->getType()->getElementType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
@ -911,7 +915,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
// Handle tail padding by extending the operand
if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = new ZExtInst(SrcVal,
Context->getIntegerType(AllocaSizeBits), "", SI);
Context.getIntegerType(AllocaSizeBits), "", SI);
DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
@ -930,7 +934,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
Value *EltVal = SrcVal;
if (Shift) {
Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
Value *ShiftVal = Context.getConstantInt(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
@ -943,7 +947,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
if (FieldSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
Context->getIntegerType(FieldSizeBits), "", SI);
Context.getIntegerType(FieldSizeBits), "", SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == FieldTy) {
// Storing to an integer field of this size, just do it.
@ -953,7 +957,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
Context->getPointerTypeUnqual(EltVal->getType()),
Context.getPointerTypeUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
@ -978,7 +982,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
Value *EltVal = SrcVal;
if (Shift) {
Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
Value *ShiftVal = Context.getConstantInt(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
@ -986,7 +990,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
// Truncate down to an integer of the right size.
if (ElementSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
Context->getIntegerType(ElementSizeBits),"",SI);
Context.getIntegerType(ElementSizeBits),"",SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == ArrayEltTy) {
// Storing to an integer field of this size, just do it.
@ -996,7 +1000,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
Context->getPointerTypeUnqual(EltVal->getType()),
Context.getPointerTypeUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
@ -1039,9 +1043,11 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal =
Context->getNullValue(Context->getIntegerType(AllocaSizeBits));
LLVMContext &Context = LI->getContext();
Value *ResultVal =
Context.getNullValue(Context.getIntegerType(AllocaSizeBits));
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Load the value from the alloca. If the NewElt is an aggregate, cast
@ -1054,11 +1060,11 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
const IntegerType *FieldIntTy = Context->getIntegerType(FieldSizeBits);
const IntegerType *FieldIntTy = Context.getIntegerType(FieldSizeBits);
if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
!isa<VectorType>(FieldTy))
SrcField = new BitCastInst(SrcField,
Context->getPointerTypeUnqual(FieldIntTy),
Context.getPointerTypeUnqual(FieldIntTy),
"", LI);
SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
@ -1083,7 +1089,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
Value *ShiftVal = Context->getConstantInt(SrcField->getType(), Shift);
Value *ShiftVal = Context.getConstantInt(SrcField->getType(), Shift);
SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
}
@ -1186,8 +1192,10 @@ void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
if (isa<ConstantInt>(I.getOperand()))
return;
LLVMContext &Context = GEPI->getContext();
if (NumElements == 1) {
GEPI->setOperand(2, Context->getNullValue(Type::Int32Ty));
GEPI->setOperand(2, Context.getNullValue(Type::Int32Ty));
return;
}
@ -1195,16 +1203,16 @@ void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
// All users of the GEP must be loads. At each use of the GEP, insert
// two loads of the appropriate indexed GEP and select between them.
Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
Context->getNullValue(I.getOperand()->getType()),
Context.getNullValue(I.getOperand()->getType()),
"isone");
// Insert the new GEP instructions, which are properly indexed.
SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
Indices[1] = Context->getNullValue(Type::Int32Ty);
Indices[1] = Context.getNullValue(Type::Int32Ty);
Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
Indices.begin(),
Indices.end(),
GEPI->getName()+".0", GEPI);
Indices[1] = Context->getConstantInt(Type::Int32Ty, 1);
Indices[1] = Context.getConstantInt(Type::Int32Ty, 1);
Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
Indices.begin(),
Indices.end(),
@ -1262,7 +1270,7 @@ void SROA::CleanupAllocaUsers(AllocationInst *AI) {
/// and stores would mutate the memory.
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
unsigned AllocaSize, const TargetData &TD,
LLVMContext *Context) {
LLVMContext &Context) {
// If this could be contributing to a vector, analyze it.
if (VecTy != Type::VoidTy) { // either null or a vector type.
@ -1290,7 +1298,7 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
cast<VectorType>(VecTy)->getElementType()
->getPrimitiveSizeInBits()/8 == EltSize)) {
if (VecTy == 0)
VecTy = Context->getVectorType(In, AllocaSize/EltSize);
VecTy = In->getContext().getVectorType(In, AllocaSize/EltSize);
return;
}
}
@ -1321,7 +1329,8 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Don't break volatile loads.
if (LI->isVolatile())
return false;
MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD, Context);
MergeInType(LI->getType(), Offset, VecTy,
AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(LI->getType());
continue;
}
@ -1330,7 +1339,7 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Storing the pointer, not into the value?
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
MergeInType(SI->getOperand(0)->getType(), Offset,
VecTy, AllocaSize, *TD, Context);
VecTy, AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
continue;
}
@ -1459,7 +1468,8 @@ void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
APVal |= APVal << 8;
Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
Value *New = ConvertScalar_InsertValue(Context->getConstantInt(APVal),
Value *New = ConvertScalar_InsertValue(
User->getContext().getConstantInt(APVal),
Old, Offset, Builder);
Builder.CreateStore(New, NewAI);
}
@ -1531,6 +1541,8 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
if (FromVal->getType() == ToType && Offset == 0)
return FromVal;
LLVMContext &Context = FromVal->getContext();
// If the result alloca is a vector type, this is either an element
// access or a bitcast to another vector type of the same size.
if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
@ -1546,7 +1558,7 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
}
// Return the element extracted out of it.
Value *V = Builder.CreateExtractElement(FromVal,
Context->getConstantInt(Type::Int32Ty,Elt),
Context.getConstantInt(Type::Int32Ty,Elt),
"tmp");
if (V->getType() != ToType)
V = Builder.CreateBitCast(V, ToType, "tmp");
@ -1557,7 +1569,7 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
// use insertvalue's to form the FCA.
if (const StructType *ST = dyn_cast<StructType>(ToType)) {
const StructLayout &Layout = *TD->getStructLayout(ST);
Value *Res = Context->getUndef(ST);
Value *Res = Context.getUndef(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
Offset+Layout.getElementOffsetInBits(i),
@ -1569,7 +1581,7 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
Value *Res = Context->getUndef(AT);
Value *Res = Context.getUndef(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
Offset+i*EltSize, Builder);
@ -1599,21 +1611,21 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
// only some bits are used.
if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateLShr(FromVal,
Context->getConstantInt(FromVal->getType(),
Context.getConstantInt(FromVal->getType(),
ShAmt), "tmp");
else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateShl(FromVal,
Context->getConstantInt(FromVal->getType(),
Context.getConstantInt(FromVal->getType(),
-ShAmt), "tmp");
// Finally, unconditionally truncate the integer to the right width.
unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
if (LIBitWidth < NTy->getBitWidth())
FromVal =
Builder.CreateTrunc(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
Builder.CreateTrunc(FromVal, Context.getIntegerType(LIBitWidth), "tmp");
else if (LIBitWidth > NTy->getBitWidth())
FromVal =
Builder.CreateZExt(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
Builder.CreateZExt(FromVal, Context.getIntegerType(LIBitWidth), "tmp");
// If the result is an integer, this is a trunc or bitcast.
if (isa<IntegerType>(ToType)) {
@ -1645,6 +1657,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// Convert the stored type to the actual type, shift it left to insert
// then 'or' into place.
const Type *AllocaType = Old->getType();
LLVMContext &Context = Old->getContext();
if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
@ -1664,7 +1677,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
SV = Builder.CreateInsertElement(Old, SV,
Context->getConstantInt(Type::Int32Ty, Elt),
Context.getConstantInt(Type::Int32Ty, Elt),
"tmp");
return SV;
}
@ -1697,7 +1710,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
SV = Builder.CreateBitCast(SV, Context->getIntegerType(SrcWidth), "tmp");
SV = Builder.CreateBitCast(SV, Context.getIntegerType(SrcWidth), "tmp");
else if (isa<PointerType>(SV->getType()))
SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
@ -1732,11 +1745,11 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// only some bits in the structure are set.
APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
SV = Builder.CreateShl(SV, Context->getConstantInt(SV->getType(),
SV = Builder.CreateShl(SV, Context.getConstantInt(SV->getType(),
ShAmt), "tmp");
Mask <<= ShAmt;
} else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
SV = Builder.CreateLShr(SV, Context->getConstantInt(SV->getType(),
SV = Builder.CreateLShr(SV, Context.getConstantInt(SV->getType(),
-ShAmt), "tmp");
Mask = Mask.lshr(-ShAmt);
}
@ -1745,7 +1758,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// in the new bits.
if (SrcWidth != DestWidth) {
assert(DestWidth > SrcWidth);
Old = Builder.CreateAnd(Old, Context->getConstantInt(~Mask), "mask");
Old = Builder.CreateAnd(Old, Context.getConstantInt(~Mask), "mask");
SV = Builder.CreateOr(Old, SV, "ins");
}
return SV;

View File

@ -58,7 +58,7 @@ FunctionPass *llvm::createCFGSimplificationPass() {
/// ChangeToUnreachable - Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
static void ChangeToUnreachable(Instruction *I, LLVMContext *Context) {
static void ChangeToUnreachable(Instruction *I, LLVMContext &Context) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
@ -71,7 +71,7 @@ static void ChangeToUnreachable(Instruction *I, LLVMContext *Context) {
BasicBlock::iterator BBI = I, BBE = BB->end();
while (BBI != BBE) {
if (!BBI->use_empty())
BBI->replaceAllUsesWith(Context->getUndef(BBI->getType()));
BBI->replaceAllUsesWith(Context.getUndef(BBI->getType()));
BB->getInstList().erase(BBI++);
}
}
@ -97,7 +97,7 @@ static void ChangeToCall(InvokeInst *II) {
static bool MarkAliveBlocks(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 128> &Reachable,
LLVMContext *Context) {
LLVMContext &Context) {
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);

View File

@ -65,7 +65,7 @@ public:
Caller = CI->getParent()->getParent();
this->TD = &TD;
if (CI->getCalledFunction())
Context = CI->getCalledFunction()->getContext();
Context = &CI->getCalledFunction()->getContext();
return CallOptimizer(CI->getCalledFunction(), CI, B);
}
@ -1639,7 +1639,7 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
const TargetData &TD = getAnalysis<TargetData>();
IRBuilder<> Builder(*Context);
IRBuilder<> Builder(F.getContext());
bool Changed = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
@ -1730,8 +1730,6 @@ void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
/// doInitialization - Add attributes to well-known functions.
///
bool SimplifyLibCalls::doInitialization(Module &M) {
Context = &M.getContext();
Modified = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Function &F = *I;

View File

@ -305,7 +305,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
// keeping track of the mapping...
//
for (; BI != DestBlock->end(); ++BI) {
Instruction *New = BI->clone(*Context);
Instruction *New = BI->clone(BI->getContext());
New->setName(BI->getName());
SourceBlock->getInstList().push_back(New);
ValueMapping[BI] = New;
@ -359,7 +359,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
Instruction *Inst = BI++;
if (isInstructionTriviallyDead(Inst))
Inst->eraseFromParent();
else if (Constant *C = ConstantFoldInstruction(Inst, Context)) {
else if (Constant *C = ConstantFoldInstruction(Inst, BI->getContext())) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
}

View File

@ -97,7 +97,7 @@ bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
ConstantInt *CI = 0; Value *AddLHS = 0;
if (isa<Instruction>(ScaleReg) && // not a constant expr.
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)),
*MemoryInst->getParent()->getContext())) {
MemoryInst->getContext())) {
TestAddrMode.ScaledReg = AddLHS;
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;

View File

@ -51,7 +51,7 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
// contained within it must dominate their uses, that all uses will
// eventually be removed (they are themselves dead).
if (!I.use_empty())
I.replaceAllUsesWith(BB->getContext()->getUndef(I.getType()));
I.replaceAllUsesWith(BB->getContext().getUndef(I.getType()));
BB->getInstList().pop_back();
}
@ -71,7 +71,7 @@ void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(BB->getContext()->getUndef(PN->getType()));
PN->replaceAllUsesWith(BB->getContext().getUndef(PN->getType()));
PN->eraseFromParent();
}
}
@ -252,7 +252,7 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
// Create a value to return... if the function doesn't return null...
if (BB->getParent()->getReturnType() != Type::VoidTy)
RetVal = TI->getParent()->getContext()->getNullValue(
RetVal = TI->getContext().getNullValue(
BB->getParent()->getReturnType());
// Create the return...
@ -387,7 +387,7 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
if (NumPreds == 0) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(BB->getContext()->getUndef(I->getType()),
cast<PHINode>(I)->addIncoming(BB->getContext().getUndef(I->getType()),
NewBB);
return NewBB;
}
@ -618,7 +618,7 @@ void llvm::CopyPrecedingStopPoint(Instruction *I,
if (I != I->getParent()->begin()) {
BasicBlock::iterator BBI = I; --BBI;
if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
CallInst *newDSPI = DSPI->clone(*I->getParent()->getContext());
CallInst *newDSPI = DSPI->clone(I->getContext());
newDSPI->insertBefore(InsertPos);
}
}

View File

@ -43,7 +43,7 @@ BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
// Loop over all instructions, and copy them over.
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
Instruction *NewInst = II->clone(*BB->getContext());
Instruction *NewInst = II->clone(BB->getContext());
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
@ -152,7 +152,7 @@ Function *llvm::CloneFunction(const Function *F,
// Create a new function type...
FunctionType *FTy =
F->getContext()->getFunctionType(F->getFunctionType()->getReturnType(),
F->getContext().getFunctionType(F->getFunctionType()->getReturnType(),
ArgTypes, F->getFunctionType()->isVarArg());
// Create the new function...
@ -249,7 +249,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
continue;
}
Instruction *NewInst = II->clone(*BB->getContext());
Instruction *NewInst = II->clone(BB->getContext());
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
@ -297,7 +297,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
}
if (!TerminatorDone) {
Instruction *NewInst = OldTI->clone(*BB->getContext());
Instruction *NewInst = OldTI->clone(BB->getContext());
if (OldTI->hasName())
NewInst->setName(OldTI->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
@ -325,7 +325,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
/// mapping its operands through ValueMap if they are available.
Constant *PruningFunctionCloner::
ConstantFoldMappedInstruction(const Instruction *I) {
LLVMContext *Context = I->getParent()->getContext();
LLVMContext &Context = I->getContext();
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
@ -367,7 +367,7 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
ClonedCodeInfo *CodeInfo,
const TargetData *TD) {
assert(NameSuffix && "NameSuffix cannot be null!");
LLVMContext *Context = OldFunc->getContext();
LLVMContext &Context = OldFunc->getContext();
#ifndef NDEBUG
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
@ -490,7 +490,7 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
BasicBlock::iterator I = NewBB->begin();
BasicBlock::const_iterator OldI = OldBB->begin();
while ((PN = dyn_cast<PHINode>(I++))) {
Value *NV = OldFunc->getContext()->getUndef(PN->getType());
Value *NV = OldFunc->getContext().getUndef(PN->getType());
PN->replaceAllUsesWith(NV);
assert(ValueMap[OldI] == PN && "ValueMap mismatch");
ValueMap[OldI] = NV;

View File

@ -90,7 +90,7 @@ Module *llvm::CloneModule(const Module *M,
if (I->hasInitializer())
GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
ValueMap,
&M->getContext())));
M->getContext())));
GV->setLinkage(I->getLinkage());
GV->setThreadLocal(I->isThreadLocal());
GV->setConstant(I->isConstant());
@ -121,7 +121,7 @@ Module *llvm::CloneModule(const Module *M,
GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]);
GA->setLinkage(I->getLinkage());
if (const Constant* C = I->getAliasee())
GA->setAliasee(cast<Constant>(MapValue(C, ValueMap, &M->getContext())));
GA->setAliasee(cast<Constant>(MapValue(C, ValueMap, M->getContext())));
}
return New;

Some files were not shown because too many files have changed in this diff Show More