add the ability for TargetData to return information about legal integer

datatypes on a given CPU.  This is intended to allow instcombine and other
transformations to avoid converting big sequences of operations to an
inconvenient width, and will help clean up after SRoA.  See also "Adding 
legal integer sizes to TargetData" on Feb 1, 2009 on llvmdev, and PR3451.

Comments welcome.

llvm-svn: 86370
This commit is contained in:
Chris Lattner 2009-11-07 09:35:34 +00:00
parent f99bf8cb76
commit cdefc1c441
3 changed files with 46 additions and 47 deletions

View File

@ -1215,6 +1215,13 @@ target datalayout = "<i>layout specification</i>"
<dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a stack object of a given bit
<i>size</i>.</dd>
<dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
<dd>This specifies a set of native integer widths for the target CPU
in bits. For example, it might contain "n32" for 32-bit PowerPC,
"n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
this set are considered to support most general arithmetic
operations efficiently.</dd>
</dl>
<p>When constructing the data layout for a given target, LLVM starts with a

View File

@ -70,6 +70,8 @@ private:
unsigned char PointerABIAlign; ///< Pointer ABI alignment
unsigned char PointerPrefAlign; ///< Pointer preferred alignment
SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
/// Alignments- Where the primitive type alignment data is stored.
///
/// @sa init().
@ -78,12 +80,8 @@ private:
/// we don't.
SmallVector<TargetAlignElem, 16> Alignments;
/*!
This member is a signal that a requested alignment type and bit width were
not found in the SmallVector.
*/
/// InvalidAlignmentElem - This member is a signal that a requested alignment
/// type and bit width were not found in the SmallVector.
static const TargetAlignElem InvalidAlignmentElem;
// Opaque pointer for the StructType -> StructLayout map.
@ -127,6 +125,7 @@ public:
PointerMemSize(TD.PointerMemSize),
PointerABIAlign(TD.PointerABIAlign),
PointerPrefAlign(TD.PointerPrefAlign),
LegalIntWidths(TD.LegalIntWidths),
Alignments(TD.Alignments),
LayoutMap(0)
{ }
@ -137,13 +136,33 @@ public:
void init(StringRef TargetDescription);
/// Target endianness...
bool isLittleEndian() const { return LittleEndian; }
bool isBigEndian() const { return !LittleEndian; }
bool isLittleEndian() const { return LittleEndian; }
bool isBigEndian() const { return !LittleEndian; }
/// getStringRepresentation - Return the string representation of the
/// TargetData. This representation is in the same format accepted by the
/// string constructor above.
std::string getStringRepresentation() const;
/// isIllegalInteger - This function returns true if the specified type is
/// known to not be a native integer type supported by the CPU. For example,
/// i64 is not native on most 32-bit CPUs and i37 is not native on any known
/// one. This returns false if the integer width is legal or we don't know.
///
/// The width is specified in bits.
///
bool isIllegalInteger(unsigned Width) const {
// If we don't have information about legal integer types, don't claim the
// type is illegal.
if (LegalIntWidths.empty()) return false;
for (unsigned i = 0, e = LegalIntWidths.size(); i != e; ++i)
if (LegalIntWidths[i] == Width)
return false;
return true;
}
/// Target pointer alignment
unsigned char getPointerABIAlignment() const { return PointerABIAlign; }
/// Return target's alignment for stack-based pointers

View File

@ -139,45 +139,7 @@ static unsigned getInt(StringRef R) {
return Result;
}
/*!
A TargetDescription string consists of a sequence of hyphen-delimited
specifiers for target endianness, pointer size and alignments, and various
primitive type sizes and alignments. A typical string looks something like:
<br><br>
"E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
<br><br>
(note: this string is not fully specified and is only an example.)
\p
Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
below) dictates how a type will be aligned within an aggregate and when used
as an argument. Preferred alignment (pref_align, below) determines a type's
alignment when emitted as a global.
\p
Specifier string details:
<br><br>
<i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
specifies a little-endian target data model.
<br><br>
<i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size,
ABI and preferred alignment.
<br><br>
<i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type
alignment. Type is
one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector, or
aggregate. Size indicates the size, e.g., 32 or 64 bits.
\p
The default string, fully specified, is:
<br><br>
"E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64"
"-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64"
"-v64:64:64-v128:128:128"
<br><br>
Note that in the case of aggregates, 0 is the default ABI and preferred
alignment. This is a special case, where the aggregate's computed worst-case
alignment will be used.
*/
void TargetData::init(StringRef Desc) {
LayoutMap = 0;
LittleEndian = false;
PointerMemSize = 8;
@ -210,7 +172,7 @@ void TargetData::init(StringRef Desc) {
assert(!Specifier.empty() && "Can't be empty here");
switch(Specifier[0]) {
switch (Specifier[0]) {
case 'E':
LittleEndian = false;
break;
@ -252,6 +214,17 @@ void TargetData::init(StringRef Desc) {
setAlignment(AlignType, ABIAlign, PrefAlign, Size);
break;
}
case 'n': // Native integer types.
Specifier = Specifier.substr(1);
do {
if (unsigned Width = getInt(Specifier))
LegalIntWidths.push_back(Width);
Split = Token.split(':');
Specifier = Split.first;
Token = Split.second;
} while (!Specifier.empty() || !Token.empty());
break;
default:
break;
}