mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-20 10:42:36 +00:00
Create a ScalarEvolution-based AliasAnalysis implementation.
This is a simple AliasAnalysis implementation which works by making ScalarEvolution queries. ScalarEvolution has a more complete understanding of arithmetic than BasicAA's collection of ad-hoc checks, so it handles some cases that BasicAA misses, for example p[i] and p[i+1] within the same iteration of a loop. This is currently experimental. It may be that the main use for this pass will be to help find cases where BasicAA can be profitably extended, or to help in the development of the overall AliasAnalysis infrastructure, however it's also possible that it could grow up to become a directly useful pass. llvm-svn: 80098
This commit is contained in:
parent
80f768698e
commit
cfb6234d13
@ -72,6 +72,13 @@ namespace llvm {
|
||||
///
|
||||
FunctionPass *createLibCallAliasAnalysisPass(LibCallInfo *LCI);
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
// createScalarEvolutionAliasAnalysisPass - This pass implements a simple
|
||||
// alias analysis using ScalarEvolution queries.
|
||||
//
|
||||
FunctionPass *createScalarEvolutionAliasAnalysisPass();
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
// createAndersensPass - This pass implements Andersen's interprocedural alias
|
||||
|
@ -51,6 +51,7 @@ namespace {
|
||||
(void) llvm::createStructRetPromotionPass();
|
||||
(void) llvm::createBasicAliasAnalysisPass();
|
||||
(void) llvm::createLibCallAliasAnalysisPass(0);
|
||||
(void) llvm::createScalarEvolutionAliasAnalysisPass();
|
||||
(void) llvm::createBlockPlacementPass();
|
||||
(void) llvm::createBlockProfilerPass();
|
||||
(void) llvm::createBreakCriticalEdgesPass();
|
||||
|
128
lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
Normal file
128
lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
Normal file
@ -0,0 +1,128 @@
|
||||
//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the ScalarEvolutionAliasAnalysis pass, which implements a
|
||||
// simple alias analysis implemented in terms of ScalarEvolution queries.
|
||||
//
|
||||
// ScalarEvolution has a more complete understanding of pointer arithmetic
|
||||
// than BasicAliasAnalysis' collection of ad-hoc analyses.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
/// ScalarEvolutionAliasAnalysis - This is a simple alias analysis
|
||||
/// implementation that uses ScalarEvolution to answer queries.
|
||||
class VISIBILITY_HIDDEN ScalarEvolutionAliasAnalysis : public FunctionPass,
|
||||
public AliasAnalysis {
|
||||
ScalarEvolution *SE;
|
||||
|
||||
public:
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
ScalarEvolutionAliasAnalysis() : FunctionPass(&ID), SE(0) {}
|
||||
|
||||
private:
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual AliasResult alias(const Value *V1, unsigned V1Size,
|
||||
const Value *V2, unsigned V2Size);
|
||||
|
||||
Value *GetUnderlyingIdentifiedObject(const SCEV *S);
|
||||
};
|
||||
} // End of anonymous namespace
|
||||
|
||||
// Register this pass...
|
||||
char ScalarEvolutionAliasAnalysis::ID = 0;
|
||||
static RegisterPass<ScalarEvolutionAliasAnalysis>
|
||||
X("scev-aa", "ScalarEvolution-based Alias Analysis", false, true);
|
||||
|
||||
// Declare that we implement the AliasAnalysis interface
|
||||
static RegisterAnalysisGroup<AliasAnalysis> Y(X);
|
||||
|
||||
FunctionPass *llvm::createScalarEvolutionAliasAnalysisPass() {
|
||||
return new ScalarEvolutionAliasAnalysis();
|
||||
}
|
||||
|
||||
void
|
||||
ScalarEvolutionAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequiredTransitive<ScalarEvolution>();
|
||||
AU.setPreservesAll();
|
||||
AliasAnalysis::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
bool
|
||||
ScalarEvolutionAliasAnalysis::runOnFunction(Function &F) {
|
||||
InitializeAliasAnalysis(this);
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
return false;
|
||||
}
|
||||
|
||||
Value *
|
||||
ScalarEvolutionAliasAnalysis::GetUnderlyingIdentifiedObject(const SCEV *S) {
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
return GetUnderlyingIdentifiedObject(AR->getStart());
|
||||
} else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
|
||||
// If there's a pointer operand, it'll be sorted at the end of the list.
|
||||
const SCEV *Last = A->getOperand(A->getNumOperands()-1);
|
||||
if (isa<PointerType>(Last->getType()))
|
||||
return GetUnderlyingIdentifiedObject(Last);
|
||||
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
|
||||
// Determine if we've found an Identified object.
|
||||
Value *V = U->getValue();
|
||||
if (isIdentifiedObject(V))
|
||||
return V;
|
||||
}
|
||||
// No Identified object found.
|
||||
return 0;
|
||||
}
|
||||
|
||||
AliasAnalysis::AliasResult
|
||||
ScalarEvolutionAliasAnalysis::alias(const Value *A, unsigned ASize,
|
||||
const Value *B, unsigned BSize) {
|
||||
// This is ScalarEvolutionAliasAnalysis. Get the SCEVs!
|
||||
const SCEV *AS = SE->getSCEV(const_cast<Value *>(A));
|
||||
const SCEV *BS = SE->getSCEV(const_cast<Value *>(B));
|
||||
|
||||
// If they evaluate to the same expression, it's a MustAlias.
|
||||
if (AS == BS) return MustAlias;
|
||||
|
||||
// If something is known about the difference between the two addresses,
|
||||
// see if it's enough to prove a NoAlias.
|
||||
if (SE->getEffectiveSCEVType(AS->getType()) ==
|
||||
SE->getEffectiveSCEVType(BS->getType())) {
|
||||
unsigned BitWidth = SE->getTypeSizeInBits(AS->getType());
|
||||
APInt AI(BitWidth, ASize);
|
||||
const SCEV *BA = SE->getMinusSCEV(BS, AS);
|
||||
if (AI.ule(SE->getUnsignedRange(BA).getUnsignedMin())) {
|
||||
APInt BI(BitWidth, BSize);
|
||||
const SCEV *AB = SE->getMinusSCEV(AS, BS);
|
||||
if (BI.ule(SE->getUnsignedRange(AB).getUnsignedMin()))
|
||||
return NoAlias;
|
||||
}
|
||||
}
|
||||
|
||||
// If ScalarEvolution can find an underlying object, form a new query.
|
||||
// The correctness of this depends on ScalarEvolution not recognizing
|
||||
// inttoptr and ptrtoint operators.
|
||||
Value *AO = GetUnderlyingIdentifiedObject(AS);
|
||||
Value *BO = GetUnderlyingIdentifiedObject(BS);
|
||||
if ((AO && AO != A) || (BO && BO != B))
|
||||
if (alias(AO ? AO : A, AO ? ~0u : ASize,
|
||||
BO ? BO : B, BO ? ~0u : BSize) == NoAlias)
|
||||
return NoAlias;
|
||||
|
||||
// Forward the query to the next analysis.
|
||||
return AliasAnalysis::alias(A, ASize, B, BSize);
|
||||
}
|
194
test/Analysis/ScalarEvolution/scev-aa.ll
Normal file
194
test/Analysis/ScalarEvolution/scev-aa.ll
Normal file
@ -0,0 +1,194 @@
|
||||
; RUN: llvm-as < %s | opt -scev-aa -aa-eval -print-all-alias-modref-info \
|
||||
; RUN: |& FileCheck %s
|
||||
|
||||
; At the time of this writing, all of these CHECK lines are cases that
|
||||
; plain -basicaa misses.
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64"
|
||||
|
||||
; p[i] and p[i+1] don't alias.
|
||||
|
||||
; CHECK: Function: loop: 3 pointers, 0 call sites
|
||||
; CHECK: NoAlias: double* %pi, double* %pi.next
|
||||
|
||||
define void @loop(double* nocapture %p, i64 %n) nounwind {
|
||||
entry:
|
||||
%j = icmp sgt i64 %n, 0
|
||||
br i1 %j, label %bb, label %return
|
||||
|
||||
bb:
|
||||
%i = phi i64 [ 0, %entry ], [ %i.next, %bb ]
|
||||
%pi = getelementptr double* %p, i64 %i
|
||||
%i.next = add i64 %i, 1
|
||||
%pi.next = getelementptr double* %p, i64 %i.next
|
||||
%x = load double* %pi
|
||||
%y = load double* %pi.next
|
||||
%z = fmul double %x, %y
|
||||
store double %z, double* %pi
|
||||
%exitcond = icmp eq i64 %i.next, %n
|
||||
br i1 %exitcond, label %return, label %bb
|
||||
|
||||
return:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Slightly more involved: p[j][i], p[j][i+1], and p[j+1][i] don't alias.
|
||||
|
||||
; CHECK: Function: nestedloop: 4 pointers, 0 call sites
|
||||
; CHECK: NoAlias: double* %pi.j, double* %pi.next.j
|
||||
; CHECK: NoAlias: double* %pi.j, double* %pi.j.next
|
||||
; CHECK: NoAlias: double* %pi.j.next, double* %pi.next.j
|
||||
|
||||
define void @nestedloop(double* nocapture %p, i64 %m) nounwind {
|
||||
entry:
|
||||
%k = icmp sgt i64 %m, 0
|
||||
br i1 %k, label %guard, label %return
|
||||
|
||||
guard:
|
||||
%l = icmp sgt i64 91, 0
|
||||
br i1 %l, label %outer.loop, label %return
|
||||
|
||||
outer.loop:
|
||||
%j = phi i64 [ 0, %guard ], [ %j.next, %outer.latch ]
|
||||
br label %bb
|
||||
|
||||
bb:
|
||||
%i = phi i64 [ 0, %outer.loop ], [ %i.next, %bb ]
|
||||
%i.next = add i64 %i, 1
|
||||
|
||||
%e = add i64 %i, %j
|
||||
%pi.j = getelementptr double* %p, i64 %e
|
||||
%f = add i64 %i.next, %j
|
||||
%pi.next.j = getelementptr double* %p, i64 %f
|
||||
%x = load double* %pi.j
|
||||
%y = load double* %pi.next.j
|
||||
%z = fmul double %x, %y
|
||||
store double %z, double* %pi.j
|
||||
|
||||
%o = add i64 %j, 91
|
||||
%g = add i64 %i, %o
|
||||
%pi.j.next = getelementptr double* %p, i64 %g
|
||||
%a = load double* %pi.j.next
|
||||
%b = fmul double %x, %a
|
||||
store double %b, double* %pi.j.next
|
||||
|
||||
%exitcond = icmp eq i64 %i.next, 91
|
||||
br i1 %exitcond, label %outer.latch, label %bb
|
||||
|
||||
outer.latch:
|
||||
%j.next = add i64 %j, 91
|
||||
%h = icmp eq i64 %j.next, %m
|
||||
br i1 %h, label %return, label %outer.loop
|
||||
|
||||
return:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Even more involved: same as nestedloop, but with a variable extent.
|
||||
; When n is 1, p[j+1][i] does alias p[j][i+1], and there's no way to
|
||||
; prove whether n will be greater than 1, so that relation will always
|
||||
; by MayAlias. The loop is guarded by a n > 0 test though, so
|
||||
; p[j+1][i] and p[j][i] can theoretically be determined to be NoAlias,
|
||||
; however the analysis currently doesn't do that.
|
||||
; TODO: Make the analysis smarter and turn that MayAlias into a NoAlias.
|
||||
|
||||
; CHECK: Function: nestedloop_more: 4 pointers, 0 call sites
|
||||
; CHECK: NoAlias: double* %pi.j, double* %pi.next.j
|
||||
; CHECK: MayAlias: double* %pi.j, double* %pi.j.next
|
||||
|
||||
define void @nestedloop_more(double* nocapture %p, i64 %n, i64 %m) nounwind {
|
||||
entry:
|
||||
%k = icmp sgt i64 %m, 0
|
||||
br i1 %k, label %guard, label %return
|
||||
|
||||
guard:
|
||||
%l = icmp sgt i64 %n, 0
|
||||
br i1 %l, label %outer.loop, label %return
|
||||
|
||||
outer.loop:
|
||||
%j = phi i64 [ 0, %guard ], [ %j.next, %outer.latch ]
|
||||
br label %bb
|
||||
|
||||
bb:
|
||||
%i = phi i64 [ 0, %outer.loop ], [ %i.next, %bb ]
|
||||
%i.next = add i64 %i, 1
|
||||
|
||||
%e = add i64 %i, %j
|
||||
%pi.j = getelementptr double* %p, i64 %e
|
||||
%f = add i64 %i.next, %j
|
||||
%pi.next.j = getelementptr double* %p, i64 %f
|
||||
%x = load double* %pi.j
|
||||
%y = load double* %pi.next.j
|
||||
%z = fmul double %x, %y
|
||||
store double %z, double* %pi.j
|
||||
|
||||
%o = add i64 %j, %n
|
||||
%g = add i64 %i, %o
|
||||
%pi.j.next = getelementptr double* %p, i64 %g
|
||||
%a = load double* %pi.j.next
|
||||
%b = fmul double %x, %a
|
||||
store double %b, double* %pi.j.next
|
||||
|
||||
%exitcond = icmp eq i64 %i.next, %n
|
||||
br i1 %exitcond, label %outer.latch, label %bb
|
||||
|
||||
outer.latch:
|
||||
%j.next = add i64 %j, %n
|
||||
%h = icmp eq i64 %j.next, %m
|
||||
br i1 %h, label %return, label %outer.loop
|
||||
|
||||
return:
|
||||
ret void
|
||||
}
|
||||
|
||||
; ScalarEvolution expands field offsets into constants, which allows it to
|
||||
; do aggressive analysis. Contrast this with BasicAA, which works by
|
||||
; recognizing GEP idioms.
|
||||
|
||||
%struct.A = type { %struct.B, i32, i32 }
|
||||
%struct.B = type { double }
|
||||
|
||||
; CHECK: Function: foo: 7 pointers, 0 call sites
|
||||
; CHECK: NoAlias: %struct.B* %B, i32* %Z
|
||||
; CHECK: NoAlias: %struct.B* %B, %struct.B* %C
|
||||
; CHECK: MustAlias: %struct.B* %C, i32* %Z
|
||||
; CHECK: NoAlias: %struct.B* %B, i32* %X
|
||||
; CHECK: MustAlias: i32* %X, i32* %Z
|
||||
; CHECK: MustAlias: %struct.B* %C, i32* %Y
|
||||
; CHECK: MustAlias: i32* %X, i32* %Y
|
||||
|
||||
define void @foo() {
|
||||
entry:
|
||||
%A = alloca %struct.A
|
||||
%B = getelementptr %struct.A* %A, i32 0, i32 0
|
||||
%Q = bitcast %struct.B* %B to %struct.A*
|
||||
%Z = getelementptr %struct.A* %Q, i32 0, i32 1
|
||||
%C = getelementptr %struct.B* %B, i32 1
|
||||
%X = bitcast %struct.B* %C to i32*
|
||||
%Y = getelementptr %struct.A* %A, i32 0, i32 1
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: Function: bar: 7 pointers, 0 call sites
|
||||
; CHECK: NoAlias: %struct.B* %N, i32* %P
|
||||
; CHECK: NoAlias: %struct.B* %N, %struct.B* %R
|
||||
; CHECK: MustAlias: %struct.B* %R, i32* %P
|
||||
; CHECK: NoAlias: %struct.B* %N, i32* %W
|
||||
; CHECK: MustAlias: i32* %P, i32* %W
|
||||
; CHECK: MustAlias: %struct.B* %R, i32* %V
|
||||
; CHECK: MustAlias: i32* %V, i32* %W
|
||||
|
||||
define void @bar() {
|
||||
%M = alloca %struct.A
|
||||
%N = getelementptr %struct.A* %M, i32 0, i32 0
|
||||
%O = bitcast %struct.B* %N to %struct.A*
|
||||
%P = getelementptr %struct.A* %O, i32 0, i32 1
|
||||
%R = getelementptr %struct.B* %N, i32 1
|
||||
%W = bitcast %struct.B* %R to i32*
|
||||
%V = getelementptr %struct.A* %M, i32 0, i32 1
|
||||
ret void
|
||||
}
|
||||
|
||||
; CHECK: 13 no alias responses
|
||||
; CHECK: 26 may alias responses
|
||||
; CHECK: 18 must alias responses
|
Loading…
x
Reference in New Issue
Block a user