AMDGPU/SI: Implement a custom MachineSchedStrategy

Summary:
GCNSchedStrategy re-uses most of GenericScheduler, it's just uses
a different method to compute the excess and critical register
pressure limits.

It's not enabled by default, to enable it you need to pass -misched=gcn
to llc.

Shader DB stats:

32464 shaders in 17874 tests
Totals:
SGPRS: 1542846 -> 1643125 (6.50 %)
VGPRS: 1005595 -> 904653 (-10.04 %)
Spilled SGPRs: 29929 -> 27745 (-7.30 %)
Spilled VGPRs: 334 -> 352 (5.39 %)
Scratch VGPRs: 1612 -> 1624 (0.74 %) dwords per thread
Code Size: 36688188 -> 37034900 (0.95 %) bytes
LDS: 1913 -> 1913 (0.00 %) blocks
Max Waves: 254101 -> 265125 (4.34 %)
Wait states: 0 -> 0 (0.00 %)

Totals from affected shaders:
SGPRS: 1338220 -> 1438499 (7.49 %)
VGPRS: 886221 -> 785279 (-11.39 %)
Spilled SGPRs: 29869 -> 27685 (-7.31 %)
Spilled VGPRs: 334 -> 352 (5.39 %)
Scratch VGPRs: 1612 -> 1624 (0.74 %) dwords per thread
Code Size: 34315716 -> 34662428 (1.01 %) bytes
LDS: 1551 -> 1551 (0.00 %) blocks
Max Waves: 188127 -> 199151 (5.86 %)
Wait states: 0 -> 0 (0.00 %)

Reviewers: arsenm, mareko, nhaehnle, MatzeB, atrick

Subscribers: arsenm, kzhuravl, llvm-commits

Differential Revision: https://reviews.llvm.org/D23688

llvm-svn: 279995
This commit is contained in:
Tom Stellard 2016-08-29 19:42:52 +00:00
parent 54b04fe77b
commit d773f533b9
32 changed files with 522 additions and 72 deletions

View File

@ -214,3 +214,48 @@ void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const {
return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv());
}
unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)
return 10;
if (SGPRs <= 88)
return 9;
if (SGPRs <= 100)
return 8;
return 7;
}
if (SGPRs <= 48)
return 10;
if (SGPRs <= 56)
return 9;
if (SGPRs <= 64)
return 8;
if (SGPRs <= 72)
return 7;
if (SGPRs <= 80)
return 6;
return 5;
}
unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
if (VGPRs <= 24)
return 10;
if (VGPRs <= 28)
return 9;
if (VGPRs <= 32)
return 8;
if (VGPRs <= 36)
return 7;
if (VGPRs <= 40)
return 6;
if (VGPRs <= 48)
return 5;
if (VGPRs <= 64)
return 4;
if (VGPRs <= 84)
return 3;
if (VGPRs <= 128)
return 2;
return 1;
}

View File

@ -429,6 +429,12 @@ public:
bool hasSGPRInitBug() const {
return SGPRInitBug;
}
/// Return the maximum number of waves per SIMD for kernels using \p SGPRs SGPRs
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs) const;
/// Return the maximum number of waves per SIMD for kernels using \p VGPRs VGPRs
unsigned getOccupancyWithNumVGPRs(unsigned VGPRs) const;
};
} // End namespace llvm

View File

@ -18,6 +18,7 @@
#include "AMDGPUCallLowering.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNSchedStrategy.h"
#include "R600ISelLowering.h"
#include "R600InstrInfo.h"
#include "R600MachineScheduler.h"
@ -96,6 +97,14 @@ static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
return new SIScheduleDAGMI(C);
}
static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
ScheduleDAGMILive *DAG =
new ScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C));
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
@ -104,6 +113,11 @@ static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
createSIMachineScheduler);
static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
"Run GCN scheduler to maximize occupancy",
createGCNMaxOccupancyMachineScheduler);
static StringRef computeDataLayout(const Triple &TT) {
if (TT.getArch() == Triple::r600) {
// 32-bit pointers.
@ -467,7 +481,7 @@ ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>();
if (ST.enableSIScheduler())
return createSIMachineScheduler(C);
return nullptr;
return createGCNMaxOccupancyMachineScheduler(C);
}
bool GCNPassConfig::addPreISel() {

View File

@ -49,6 +49,7 @@ add_llvm_target(AMDGPUCodeGen
AMDGPUPromoteAlloca.cpp
AMDGPURegisterInfo.cpp
GCNHazardRecognizer.cpp
GCNSchedStrategy.cpp
R600ClauseMergePass.cpp
R600ControlFlowFinalizer.cpp
R600EmitClauseMarkers.cpp

View File

@ -0,0 +1,312 @@
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#define DEBUG_TYPE "misched"
using namespace llvm;
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C) :
GenericScheduler(C) { }
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
const MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
ST.getOccupancyWithNumVGPRs(VGPRs));
return std::min(MinRegOccupancy,
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize()));
}
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
int SGPRPressure,
int VGPRPressure,
int SGPRExcessLimit,
int VGPRExcessLimit,
int SGPRCriticalLimit,
int VGPRCriticalLimit) {
Cand.SU = SU;
Cand.AtTop = AtTop;
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
std::vector<unsigned> Pressure;
std::vector<unsigned> MaxPressure;
if (AtTop)
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
else {
// FIXME: I think for bottom up scheduling, the register pressure is cached
// and can be retrieved by DAG->getPressureDif(SU).
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
}
int NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
int NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const int MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// FIXME: This is also necessary, because some passes that run after
// scheduling and before regalloc increase register pressure.
const int ErrorMargin = 3;
VGPRExcessLimit -= ErrorMargin;
SGPRExcessLimit -= ErrorMargin;
// We only need to update the RPDelata for instructions that increase
// register pressure. Instructions that decrease or keep reg pressure
// the same will be marked as RegExcess in tryCandidate() when they
// are compared with instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure = SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
VGPRCriticalLimit -= ErrorMargin;
SGPRCriticalLimit -= ErrorMargin;
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
const SISubtarget &ST = DAG->MF.getSubtarget<SISubtarget>();
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
unsigned SGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
unsigned VGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
unsigned MaxWaves = getMaxWaves(SGPRPressure, VGPRPressure, DAG->MF);
unsigned SGPRCriticalLimit = SRI->getNumSGPRsAllowed(ST, MaxWaves);
unsigned VGPRCriticalLimit = SRI->getNumVGPRsAllowed(MaxWaves);
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
SGPRPressure, VGPRPressure,
SGPRExcessLimit, VGPRExcessLimit,
SGPRCriticalLimit, VGPRCriticalLimit);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
}
}
}
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
switch (Reason) {
default:
return Reason;
case GenericSchedulerBase::RegCritical:
case GenericSchedulerBase::RegExcess:
return -Reason;
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(BotCand));
}
// Check if the top Q has a better candidate.
DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(TopCand));
}
// Pick best from BotCand and TopCand.
DEBUG(
dbgs() << "Top Cand: ";
traceCandidate(BotCand);
dbgs() << "Bot Cand: ";
traceCandidate(TopCand);
);
SchedCandidate Cand;
if (TopCand.Reason == BotCand.Reason) {
Cand = BotCand;
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
TopCand.Reason = NoCand;
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
} else {
TopCand.Reason = TopReason;
}
} else {
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = BotCand;
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = BotCand;
} else {
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
if (TopRank > BotRank) {
Cand = TopCand;
} else {
Cand = BotCand;
}
}
}
DEBUG(
dbgs() << "Picking: ";
traceCandidate(Cand);
);
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
return SU;
}

View File

@ -0,0 +1,54 @@
//===-- GCNSchedStrategy.h - GCN Scheduler Strategy -*- C++ -*-------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_GCNSCHEDSTRATEGY_H
#define LLVM_LIB_TARGET_AMDGPU_GCNSCHEDSTRATEGY_H
#include "llvm/CodeGen/MachineScheduler.h"
namespace llvm {
class SIRegisterInfo;
/// This is a minimal scheduler strategy. The main difference between this
/// and the GenericScheduler is that GCNSchedStrategy uses different
/// heuristics to determine excess/critical pressure sets. Its goal is to
/// maximize kernel occupancy (i.e. maximum number of waves per simd).
class GCNMaxOccupancySchedStrategy : public GenericScheduler {
SUnit *pickNodeBidirectional(bool &IsTopNode);
void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand);
void initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
int SGPRPressure, int VGPRPressure,
int SGPRExcessLimit, int VGPRExcessLimit,
int SGPRCriticalLimit, int VGPRCriticalLimit);
void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand,
SchedBoundary *Zone, const SIRegisterInfo *SRI,
unsigned SGPRPressure, unsigned VGPRPressure);
public:
GCNMaxOccupancySchedStrategy(const MachineSchedContext *C);
SUnit *pickNode(bool &IsTopNode) override;
};
} // End namespace llvm
#endif // GCNSCHEDSTRATEGY_H

View File

@ -249,6 +249,12 @@ unsigned SIRegisterInfo::getRegPressureSetLimit(const MachineFunction &MF,
return VGPRLimit;
}
unsigned
SIRegisterInfo::getDefaultRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const {
return AMDGPURegisterInfo::getRegPressureSetLimit(MF, Idx);
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
return Fn.getFrameInfo().hasStackObjects();
}

View File

@ -51,6 +51,8 @@ public:
unsigned getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const override;
unsigned getDefaultRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const;
bool requiresRegisterScavenging(const MachineFunction &Fn) const override;

View File

@ -47,6 +47,10 @@ def Write64Bit : SchedWrite;
class SISchedMachineModel : SchedMachineModel {
let CompleteModel = 1;
// MicroOpBufferSize = 1 means that instructions will always be added
// the ready queue when they become available. This exposes them
// to the register pressure analysis.
let MicroOpBufferSize = 1;
let IssueWidth = 1;
let PostRAScheduler = 1;
}

View File

@ -258,10 +258,10 @@ define void @v_and_constant_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr)
}
; FUNC-LABEL: {{^}}v_and_multi_use_constant_i64:
; SI: buffer_load_dwordx2 v{{\[}}[[LO0:[0-9]+]]:[[HI0:[0-9]+]]{{\]}}
; SI: buffer_load_dwordx2 v{{\[}}[[LO1:[0-9]+]]:[[HI1:[0-9]+]]{{\]}}
; SI-DAG: s_mov_b32 [[KLO:s[0-9]+]], 0xab19b207{{$}}
; SI-DAG: buffer_load_dwordx2 v{{\[}}[[LO0:[0-9]+]]:[[HI0:[0-9]+]]{{\]}}
; SI-DAG: buffer_load_dwordx2 v{{\[}}[[LO1:[0-9]+]]:[[HI1:[0-9]+]]{{\]}}
; SI-DAG: s_movk_i32 [[KHI:s[0-9]+]], 0x11e{{$}}
; SI-DAG: s_mov_b32 [[KLO:s[0-9]+]], 0xab19b207{{$}}
; SI-DAG: v_and_b32_e32 {{v[0-9]+}}, [[KLO]], v[[LO0]]
; SI-DAG: v_and_b32_e32 {{v[0-9]+}}, [[KHI]], v[[HI0]]
; SI-DAG: v_and_b32_e32 {{v[0-9]+}}, [[KLO]], v[[LO1]]
@ -284,10 +284,9 @@ define void @v_and_multi_use_constant_i64(i64 addrspace(1)* %out, i64 addrspace(
; SI: buffer_load_dwordx2 v{{\[}}[[LO1:[0-9]+]]:[[HI1:[0-9]+]]{{\]}}
; SI-NOT: and
; SI: v_and_b32_e32 v[[RESLO0:[0-9]+]], 63, v[[LO0]]
; SI-NOT: and
; SI: buffer_store_dwordx2 v{{\[}}[[RESLO0]]
; SI: v_and_b32_e32 v[[RESLO1:[0-9]+]], 63, v[[LO1]]
; SI-NOT: and
; SI: buffer_store_dwordx2 v{{\[}}[[RESLO0]]
; SI: buffer_store_dwordx2 v{{\[}}[[RESLO1]]
define void @v_and_multi_use_inline_imm_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %aptr) {
%a = load volatile i64, i64 addrspace(1)* %aptr
@ -486,8 +485,8 @@ define void @s_and_inline_imm_neg_4.0_i64(i64 addrspace(1)* %out, i64 addrspace(
; low 32-bits, which is not a valid 64-bit inline immmediate.
; FUNC-LABEL: {{^}}s_and_inline_imm_f32_4.0_i64:
; SI: s_load_dword s
; SI: s_load_dwordx2
; SI: s_load_dword s
; SI-NOT: and
; SI: s_and_b32 s[[K_HI:[0-9]+]], s{{[0-9]+}}, 4.0
; SI-NOT: and

View File

@ -155,8 +155,8 @@ define void @s_ctpop_i128(i32 addrspace(1)* noalias %out, i128 %val) nounwind {
}
; FUNC-LABEL: {{^}}s_ctpop_i65:
; GCN: s_and_b32
; GCN: s_bcnt1_i32_b64 [[REG0:s[0-9]+]],
; GCN: s_and_b32
; GCN: s_bcnt1_i32_b64 [[REG1:s[0-9]+]],
; GCN: s_add_i32 {{s[0-9]+}}, [[REG0]], [[REG1]]
; GCN: s_endpgm

View File

@ -8,7 +8,7 @@
; SI-LABEL: {{^}}offset_order:
; SI: ds_read2_b32 v[{{[0-9]+}}:{{[0-9]+}}], v{{[0-9]+}} offset0:2 offset1:3
; SI-DAG: ds_read2_b32 v[{{[0-9]+}}:{{[0-9]+}}], v{{[0-9]+}} offset0:2 offset1:3
; SI-DAG: ds_read2_b32 v[{{[0-9]+}}:{{[0-9]+}}], v{{[0-9]+}} offset0:12 offset1:14
; SI-DAG: ds_read_b32 v{{[0-9]+}}, v{{[0-9]+}} offset:44

View File

@ -13,8 +13,10 @@ declare <16 x double> @llvm.ceil.v16f64(<16 x double>) nounwind readnone
; CI: v_ceil_f64_e32
; SI: s_bfe_u32 [[SEXP:s[0-9]+]], {{s[0-9]+}}, 0xb0014
; SI-DAG: s_and_b32 s{{[0-9]+}}, s{{[0-9]+}}, 0x80000000
; SI-DAG: s_addk_i32 [[SEXP]], 0xfc01
; SI-DAG: s_lshr_b64 s[{{[0-9]+:[0-9]+}}], s[{{[0-9]+:[0-9]+}}], [[SEXP]]
; FIXME: We should be using s_addk_i32 here, but the reg allocation hints
; are not always followed.
; SI-DAG: s_add_i32 [[SEXP0:s[0-9]+]], [[SEXP]], 0xfffffc01
; SI-DAG: s_lshr_b64 s[{{[0-9]+:[0-9]+}}], s[{{[0-9]+:[0-9]+}}], [[SEXP0]]
; SI-DAG: s_not_b64
; SI-DAG: s_and_b64
; SI-DAG: cmp_gt_i32

View File

@ -548,7 +548,7 @@ define void @test_f32_interp(float addrspace(1)* %out,
; FUNC-LABEL: {{^}}test_f64_interp:
; SI: v_fma_f64 [[VR:v\[[0-9]+:[0-9]+\]]], -[[VT:v\[[0-9]+:[0-9]+\]]], [[VY:v\[[0-9]+:[0-9]+\]]], [[VY]]
; SI: v_fma_f64 [[VR:v\[[0-9]+:[0-9]+\]]], [[VX:v\[[0-9]+:[0-9]+\]]], [[VT]], [[VR]]
; SI: v_fma_f64 v{{\[[0-9]+:[0-9]+\]}}, [[VX:v\[[0-9]+:[0-9]+\]]], [[VT]], [[VR]]
define void @test_f64_interp(double addrspace(1)* %out,
double addrspace(1)* %in1,
double addrspace(1)* %in2,

View File

@ -6,8 +6,8 @@ declare double @llvm.maxnum.f64(double, double) nounwind readnone
; SI-LABEL: {{^}}test_fmax3_f64:
; SI-DAG: buffer_load_dwordx2 [[REGA:v\[[0-9]+:[0-9]+\]]], off, s[{{[0-9]+:[0-9]+}}], 0{{$}}
; SI-DAG: buffer_load_dwordx2 [[REGB:v\[[0-9]+:[0-9]+\]]], off, s[{{[0-9]+:[0-9]+}}], 0 offset:8
; SI-DAG: buffer_load_dwordx2 [[REGC:v\[[0-9]+:[0-9]+\]]], off, s[{{[0-9]+:[0-9]+}}], 0 offset:16
; SI: v_max_f64 [[REGA]], [[REGA]], [[REGB]]
; SI: buffer_load_dwordx2 [[REGC:v\[[0-9]+:[0-9]+\]]], off, s[{{[0-9]+:[0-9]+}}], 0 offset:16
; SI: v_max_f64 [[RESULT:v\[[0-9]+:[0-9]+\]]], [[REGA]], [[REGC]]
; SI: buffer_store_dwordx2 [[RESULT]],
; SI: s_endpgm

View File

@ -22,16 +22,16 @@ entry:
; XXX: Could do v_or_b32 directly
; CHECK-LABEL: {{^}}extract_w_offset_salu_use_vector:
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK: s_mov_b32 m0
; CHECK-NEXT: v_movrels_b32_e32
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: s_or_b32
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; CHECK: v_movrels_b32_e32
define void @extract_w_offset_salu_use_vector(i32 addrspace(1)* %out, i32 %in, <4 x i32> %or.val) {
entry:
%idx = add i32 %in, 1
@ -242,13 +242,13 @@ entry:
; FIXME: Why is vector copied in between?
; CHECK-DAG: {{buffer|flat}}_load_dword [[IDX0:v[0-9]+]]
; CHECK-DAG: s_mov_b32 [[S_ELT0:s[0-9]+]], 7
; CHECK-DAG: s_mov_b32 [[S_ELT1:s[0-9]+]], 9
; CHECK-DAG: s_mov_b32 [[S_ELT0:s[0-9]+]], 7
; CHECK-DAG: v_mov_b32_e32 [[VEC_ELT0:v[0-9]+]], [[S_ELT0]]
; CHECK-DAG: v_mov_b32_e32 [[VEC_ELT1:v[0-9]+]], [[S_ELT1]]
; CHECK: s_mov_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], exec
; CHECK: s_waitcnt vmcnt(0) lgkmcnt(0)
; CHECK: s_waitcnt vmcnt(0)
; CHECK: [[LOOP0:BB[0-9]+_[0-9]+]]:
; CHECK-NEXT: v_readfirstlane_b32 [[READLANE:s[0-9]+]], [[IDX0]]
@ -303,8 +303,10 @@ bb2:
; CHECK-DAG: {{buffer|flat}}_load_dword [[IDX0:v[0-9]+]]
; CHECK-DAG: v_mov_b32 [[INS0:v[0-9]+]], 62
; CHECK-DAG: v_mov_b32_e32 v[[VEC_ELT0:[0-9]+]], s[[S_ELT0]]
; CHECK-DAG: v_mov_b32_e32 v[[VEC_ELT3:[0-9]+]], s[[S_ELT3]]
; CHECK: v_mov_b32_e32 v[[VEC_ELT2:[0-9]+]], s{{[0-9]+}}
; CHECK: v_mov_b32_e32 v[[VEC_ELT1:[0-9]+]], s{{[0-9]+}}
; CHECK: v_mov_b32_e32 v[[VEC_ELT0:[0-9]+]], s[[S_ELT0]]
; CHECK: [[LOOP0:BB[0-9]+_[0-9]+]]:
; CHECK-NEXT: v_readfirstlane_b32 [[READLANE:s[0-9]+]], [[IDX0]]
@ -324,7 +326,7 @@ bb2:
; CHECK: v_cmp_eq_u32_e32 vcc, [[READLANE]], [[IDX0]]
; CHECK: s_mov_b32 m0, [[READLANE]]
; CHECK: s_and_saveexec_b64 vcc, vcc
; CHECK-NEXT: v_movreld_b32_e32 [[VEC_ELT1]], 63
; CHECK-NEXT: v_movreld_b32_e32 v[[VEC_ELT1]], 63
; CHECK-NEXT: s_xor_b64 exec, exec, vcc
; CHECK: s_cbranch_execnz [[LOOP1]]

View File

@ -344,7 +344,7 @@ endif:
; GCN-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}}
; GCN-DAG: v_mov_b32_e32 [[ELT1:v[0-9]+]], 0x40200000
; GCN: s_mov_b32 m0, [[SCALEDIDX]]
; GCN-DAG: s_mov_b32 m0, [[SCALEDIDX]]
; GCN: v_movreld_b32_e32 v{{[0-9]+}}, 0
; Increment to next element folded into base register, but FileCheck

View File

@ -343,8 +343,8 @@ define void @constant_sextload_v16i16_to_v16i32(<16 x i32> addrspace(1)* %out, <
; FUNC-LABEL: {{^}}constant_zextload_v32i16_to_v32i32:
; GCN-DAG: s_load_dwordx16
; GCN-DAG: s_mov_b32 [[K:s[0-9]+]], 0xffff{{$}}
; GCN: s_and_b32 s{{[0-9]+}}, s{{[0-9]+}}, [[K]]
; GCN: s_lshr_b32 s{{[0-9]+}}, s{{[0-9]+}}, 16
; GCN-DAG: s_and_b32 s{{[0-9]+}}, s{{[0-9]+}}, [[K]]
; GCN-DAG: s_lshr_b32 s{{[0-9]+}}, s{{[0-9]+}}, 16
; EG-DAG: VTX_READ_128 {{T[0-9]+\.XYZW}}, {{T[0-9]+\.[XYZW]}}, 0, #1
; EG-DAG: VTX_READ_128 {{T[0-9]+\.XYZW}}, {{T[0-9]+\.[XYZW]}}, 16, #1

View File

@ -360,7 +360,7 @@ define void @global_zextload_v16i32_to_v16i64(<16 x i64> addrspace(1)* %out, <16
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA-DAG: buffer_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4

View File

@ -6,12 +6,12 @@
; resulting in losing the store to gptr
; FUNC-LABEL: {{^}}missing_store_reduced:
; SI: s_load_dwordx2
; SI: ds_read_b64
; SI-DAG: buffer_store_dword
; SI-DAG: v_readfirstlane_b32 s[[PTR_LO:[0-9]+]], v{{[0-9]+}}
; SI: v_readfirstlane_b32 s[[PTR_HI:[0-9]+]], v{{[0-9]+}}
; SI: s_load_dword
; SI: s_nop 2
; SI: s_nop 3
; SI: s_load_dword s{{[0-9]+}}, s{{\[}}[[PTR_LO]]:[[PTR_HI]]{{\]}}
; SI: buffer_store_dword
; SI: s_endpgm

View File

@ -9,11 +9,11 @@
; GCN-DAG: s_load_dwordx2 s{{\[}}[[ARG1LO:[0-9]+]]:[[ARG1HI:[0-9]+]]{{\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0x0{{$}}
; GCN-DAG: buffer_load_dwordx2 v{{\[}}[[LDPTRLO:[0-9]+]]:[[LDPTRHI:[0-9]+]]{{\]}}
; GCN-NOT: v_mov_b32
; GCN: v_mov_b32_e32 v[[VARG1HI:[0-9]+]], s[[ARG1HI]]
; GCN-NOT: v_mov_b32
; GCN: v_mov_b32_e32 v[[VARG1LO:[0-9]+]], s[[ARG1LO]]
; GCN-NOT: v_mov_b32
; GCN: v_mov_b32_e32 v[[VARG1HI:[0-9]+]], s[[ARG1HI]]
; GCN-NOT: v_mov_b32
; GCN: v_add_i32_e32 v[[PTRLO:[0-9]+]], vcc, v[[LDPTRLO]], v[[VARG1LO]]
; GCN: v_addc_u32_e32 v[[PTRHI:[0-9]+]], vcc, v[[LDPTRHI]], v[[VARG1HI]]

View File

@ -103,9 +103,8 @@ define void @rcp_fabs_fneg_pat_f32(float addrspace(1)* %out, float %src) #0 {
; FUNC-LABEL: {{^}}rcp_fabs_fneg_pat_multi_use_f32:
; GCN: s_load_dword [[SRC:s[0-9]+]]
; GCN: v_rcp_f32_e64 [[RCP:v[0-9]+]], -|[[SRC]]|
; GCN: buffer_store_dword [[RCP]]
; GCN: v_mul_f32_e64 [[MUL:v[0-9]+]], [[SRC]], -|[[SRC]]|
; GCN: buffer_store_dword [[RCP]]
; GCN: buffer_store_dword [[MUL]]
define void @rcp_fabs_fneg_pat_multi_use_f32(float addrspace(1)* %out, float %src) #0 {
%src.fabs = call float @llvm.fabs.f32(float %src)

View File

@ -18,12 +18,13 @@ define amdgpu_vs {float, float} @vgpr([9 x <16 x i8>] addrspace(2)* byval, i32 i
}
; GCN-LABEL: {{^}}vgpr_literal:
; GCN: exp 15, 0, 1, 1, 1, v0, v0, v0, v0
; GCN: s_waitcnt expcnt(0)
; GCN: v_mov_b32_e32 v4, v0
; GCN: exp 15, 0, 1, 1, 1, v4, v4, v4, v4
; GCN-DAG: v_mov_b32_e32 v0, 1.0
; GCN-DAG: v_mov_b32_e32 v1, 2.0
; GCN-DAG: v_mov_b32_e32 v2, 4.0
; GCN-DAG: v_mov_b32_e32 v3, -1.0
; GCN: s_waitcnt expcnt(0)
; GCN-NOT: s_endpgm
define amdgpu_vs {float, float, float, float} @vgpr_literal([9 x <16 x i8>] addrspace(2)* byval, i32 inreg, i32 inreg, float) {
call void @llvm.SI.export(i32 15, i32 1, i32 1, i32 0, i32 1, float %3, float %3, float %3, float %3)
@ -229,13 +230,14 @@ define amdgpu_vs {float, i32, float, i32, i32} @both([9 x <16 x i8>] addrspace(2
; GCN-LABEL: {{^}}structure_literal:
; GCN: exp 15, 0, 1, 1, 1, v0, v0, v0, v0
; GCN: s_waitcnt expcnt(0)
; GCN: v_mov_b32_e32 v3, v0
; GCN: exp 15, 0, 1, 1, 1, v3, v3, v3, v3
; GCN-DAG: v_mov_b32_e32 v0, 1.0
; GCN-DAG: s_mov_b32 s0, 2
; GCN-DAG: s_mov_b32 s1, 3
; GCN-DAG: v_mov_b32_e32 v1, 2.0
; GCN-DAG: v_mov_b32_e32 v2, 4.0
; GCN: s_waitcnt expcnt(0)
define amdgpu_vs {{float, i32}, {i32, <2 x float>}} @structure_literal([9 x <16 x i8>] addrspace(2)* byval, i32 inreg, i32 inreg, float) {
call void @llvm.SI.export(i32 15, i32 1, i32 1, i32 0, i32 1, float %3, float %3, float %3, float %3)
ret {{float, i32}, {i32, <2 x float>}} {{float, i32} {float 1.0, i32 2}, {i32, <2 x float>} {i32 3, <2 x float> <float 2.0, float 4.0>}}

View File

@ -134,8 +134,8 @@ define void @v_sad_u32_multi_use_sub_pat2(i32 addrspace(1)* %out, i32 %a, i32 %b
; GCN-LABEL: {{^}}v_sad_u32_multi_use_select_pat2:
; GCN: s_sub_i32 s{{[0-9]+}}, s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_sub_i32 s{{[0-9]+}}, s{{[0-9]+}}, s{{[0-9]+}}
; GCN: v_cmp_gt_u32_e32 vcc, s{{[0-9]+}}, v{{[0-9]+}}
; GCN: s_sub_i32 s{{[0-9]+}}, s{{[0-9]+}}, s{{[0-9]+}}
define void @v_sad_u32_multi_use_select_pat2(i32 addrspace(1)* %out, i32 %a, i32 %b, i32 %c) {
%icmp0 = icmp ugt i32 %a, %b
%sub0 = sub i32 %a, %b

View File

@ -170,14 +170,12 @@ entry:
; CI.
; GCN-LABEL: {{^}}smrd_valu_ci_offset_x8:
; GCN-NOHSA: s_mov_b32 [[OFFSET1:s[0-9]+]], 0x9a50{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: s_mov_b32 [[OFFSET0:s[0-9]+]], 0x9a40{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET0]] addr64{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: s_mov_b32 [[OFFSET1:s[0-9]+]], 0x9a50{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET1]] addr64{{$}}
; GCN-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET0]] addr64{{$}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}

View File

@ -93,13 +93,13 @@ define void @select_v8i32(<8 x i32> addrspace(1)* %out, <8 x i32> %a, <8 x i32>
; SI-DAG: s_load_dwordx2 s{{\[}}[[ALO:[0-9]+]]:[[AHI:[0-9]+]]{{\]}}, s{{\[[0-9]+:[0-9]+\]}}, {{0xb|0x2c}}
; SI-DAG: s_load_dwordx2 s{{\[}}[[BLO:[0-9]+]]:[[BHI:[0-9]+]]{{\]}}, s{{\[[0-9]+:[0-9]+\]}}, {{0xd|0x34}}
; SI-DAG: v_mov_b32_e32 v{{[0-9]+}}, s[[ALO]]
; SI-DAG: v_mov_b32_e32 v{{[0-9]+}}, s[[AHI]]
; SI-DAG: v_mov_b32_e32 v{{[0-9]+}}, s[[BLO]]
; SI-DAG: v_mov_b32_e32 v{{[0-9]+}}, s[[BHI]]
; SI-DAG: v_mov_b32_e32 v{{[0-9]+}}, s[[ALO]]
; SI-DAG: v_cmp_eq_i32_e64 vcc, 0, s{{[0-9]+}}
; SI: v_cndmask_b32_e32
; SI: v_mov_b32_e32 v{{[0-9]+}}, s[[BLO]]
; SI: v_cndmask_b32_e32
; SI: buffer_store_dwordx2
define void @s_select_v2f32(<2 x float> addrspace(1)* %out, <2 x float> %a, <2 x float> %b, i32 %c) nounwind {

View File

@ -341,11 +341,12 @@ define void @v_uextract_bit_27_29_multi_use_shift_i64(i64 addrspace(1)* %out, i6
; GCN-LABEL: {{^}}v_uextract_bit_34_37_multi_use_shift_i64:
; GCN: buffer_load_dword [[VAL:v[0-9]+]], v{{\[[0-9]+:[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0 addr64 offset:4{{$}}
; GCN: v_mov_b32_e32 v[[ZERO_SHR:[0-9]+]], 0{{$}}
; GCN: v_mov_b32_e32 v[[ZERO_BFE:[0-9]+]], v[[ZERO_SHR]]
; GCN-DAG: v_lshrrev_b32_e32 v[[SHR:[0-9]+]], 2, [[VAL]]
; GCN-DAG: v_bfe_u32 v[[BFE:[0-9]+]], [[VAL]], 2, 3
; GCN-DAG: v_mov_b32_e32 v[[ZERO:[0-9]+]], 0{{$}}
; GCN-DAG: buffer_store_dwordx2 v{{\[}}[[SHR]]:[[ZERO]]{{\]}}
; GCN: buffer_store_dwordx2 v{{\[}}[[BFE]]:[[ZERO]]{{\]}}
; GCN-DAG: buffer_store_dwordx2 v{{\[}}[[SHR]]:[[ZERO_SHR]]{{\]}}
; GCN: buffer_store_dwordx2 v{{\[}}[[BFE]]:[[ZERO_BFE]]{{\]}}
define void @v_uextract_bit_34_37_multi_use_shift_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %in) #1 {
%id.x = tail call i32 @llvm.amdgcn.workitem.id.x()
%in.gep = getelementptr i64, i64 addrspace(1)* %in, i32 %id.x

View File

@ -70,9 +70,9 @@ define void @no_reorder_barrier_local_load_global_store_local_load(i32 addrspace
}
; FUNC-LABEL: @reorder_constant_load_global_store_constant_load
; CI-DAG: buffer_store_dword
; CI-DAG: v_readfirstlane_b32 s[[PTR_LO:[0-9]+]], v{{[0-9]+}}
; CI: v_readfirstlane_b32 s[[PTR_HI:[0-9]+]], v{{[0-9]+}}
; CI: buffer_store_dword
; CI-DAG: s_load_dword s{{[0-9]+}}, s{{\[}}[[PTR_LO]]:[[PTR_HI]]{{\]}}, 0x1
; CI-DAG: s_load_dword s{{[0-9]+}}, s{{\[}}[[PTR_LO]]:[[PTR_HI]]{{\]}}, 0x3
; CI: buffer_store_dword
@ -136,9 +136,9 @@ define void @reorder_smrd_load_local_store_smrd_load(i32 addrspace(1)* %out, i32
}
; FUNC-LABEL: @reorder_global_load_local_store_global_load
; CI: buffer_load_dword
; CI: buffer_load_dword
; CI: ds_write_b32
; CI: buffer_load_dword
; CI: buffer_load_dword
; CI: buffer_store_dword
define void @reorder_global_load_local_store_global_load(i32 addrspace(1)* %out, i32 addrspace(3)* %lptr, i32 addrspace(1)* %ptr0) #0 {
%ptr1 = getelementptr inbounds i32, i32 addrspace(1)* %ptr0, i64 1
@ -181,11 +181,11 @@ define void @reorder_local_offsets(i32 addrspace(1)* nocapture %out, i32 addrspa
; FUNC-LABEL: @reorder_global_offsets
; CI: buffer_load_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:400
; CI: buffer_store_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:12
; CI: buffer_load_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:408
; CI: buffer_load_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:12
; CI: buffer_store_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:12
; CI: buffer_store_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:400
; CI: buffer_store_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:408
; CI: buffer_load_dword {{v[0-9]+}}, off, {{s\[[0-9]+:[0-9]+\]}}, 0 offset:12
; CI: s_endpgm
define void @reorder_global_offsets(i32 addrspace(1)* nocapture %out, i32 addrspace(1)* noalias nocapture readnone %gptr, i32 addrspace(1)* noalias nocapture %ptr0) #0 {
%ptr1 = getelementptr inbounds i32, i32 addrspace(1)* %ptr0, i32 3

View File

@ -35,11 +35,11 @@ define void @trunc_load_shl_i64(i32 addrspace(1)* %out, i64 %a) {
; SI: s_load_dwordx2 s{{\[}}[[LO_SREG:[0-9]+]]:{{[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0xd
; SI: s_lshl_b64 s{{\[}}[[LO_SHL:[0-9]+]]:{{[0-9]+\]}}, s{{\[}}[[LO_SREG]]:{{[0-9]+\]}}, 2
; SI: s_add_u32 s[[LO_SREG2:[0-9]+]], s[[LO_SHL]],
; SI: s_addc_u32
; SI: v_mov_b32_e32
; SI: v_mov_b32_e32 v[[LO_VREG:[0-9]+]], s[[LO_SREG2]]
; SI: v_mov_b32_e32
; SI: s_addc_u32
; SI: buffer_store_dword v[[LO_VREG]],
; SI: v_mov_b32_e32
; SI: v_mov_b32_e32
define void @trunc_shl_i64(i64 addrspace(1)* %out2, i32 addrspace(1)* %out, i64 %a) {
%aa = add i64 %a, 234 ; Prevent shrinking store.
%b = shl i64 %aa, 2

View File

@ -38,16 +38,16 @@
; SI: v_cndmask_b32_e64
; SI: v_mul_hi_u32 [[Quotient:v[0-9]+]]
; SI: v_mul_lo_i32 [[Num_S_Remainder:v[0-9]+]]
; SI-DAG: v_add_i32_e32 [[Quotient_A_One:v[0-9]+]], vcc, 1, [[Quotient]]
; SI-DAG: v_sub_i32_e32 [[Remainder:v[0-9]+]], vcc, {{[vs][0-9]+}}, [[Num_S_Remainder]]
; SI-DAG: v_cndmask_b32_e64
; SI-DAG: v_cndmask_b32_e64
; SI: v_and_b32_e32 [[Tmp1:v[0-9]+]]
; SI-DAG: v_add_i32_e32 [[Quotient_A_One:v[0-9]+]], vcc, 1, [[Quotient]]
; SI-DAG: v_subrev_i32_e32 [[Quotient_S_One:v[0-9]+]],
; SI-DAG: v_subrev_i32_e32 [[Remainder_S_Den:v[0-9]+]],
; SI: v_and_b32_e32 [[Tmp1:v[0-9]+]]
; SI-DAG: v_cndmask_b32_e64
; SI-DAG: v_cndmask_b32_e64
; SI-DAG: v_add_i32_e32 [[Remainder_A_Den:v[0-9]+]],
; SI-DAG: v_subrev_i32_e32 [[Remainder_S_Den:v[0-9]+]],
; SI-DAG: v_cndmask_b32_e64
; SI-DAG: v_cndmask_b32_e64
; SI: s_endpgm

View File

@ -42,15 +42,18 @@ define void @test_sgpr_use_twice_ternary_op_a_a_b(float addrspace(1)* %out, floa
}
; GCN-LABEL: {{^}}test_use_s_v_s:
; GCN: buffer_load_dword [[VA0:v[0-9]+]]
; GCN: buffer_load_dword [[VA1:v[0-9]+]]
; GCN-DAG: s_load_dword [[SA:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, {{0xb|0x2c}}
; GCN-DAG: s_load_dword [[SB:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, {{0xc|0x30}}
; SI: buffer_load_dword [[VA0:v[0-9]+]]
; SI: buffer_load_dword [[VA1:v[0-9]+]]
; GCN-NOT: v_mov_b32
; GCN: v_mov_b32_e32 [[VB:v[0-9]+]], [[SB]]
; GCN-NOT: v_mov_b32
; VI: buffer_load_dword [[VA0:v[0-9]+]]
; VI: buffer_load_dword [[VA1:v[0-9]+]]
; GCN-DAG: v_fma_f32 [[RESULT0:v[0-9]+]], [[VA0]], [[SA]], [[VB]]
; GCN-DAG: v_fma_f32 [[RESULT1:v[0-9]+]], [[VA1]], [[SA]], [[VB]]
; GCN: buffer_store_dword [[RESULT0]]

View File

@ -12,16 +12,16 @@
; GCN-LABEL: {{^}}main:
; GCN-DAG: s_mov_b32 s13, s12
; GCN-DAG: s_mov_b32 s16, SCRATCH_RSRC_DWORD0
; GCN-DAG: s_mov_b32 s17, SCRATCH_RSRC_DWORD1
; GCN-DAG: s_mov_b32 s18, -1
; SI-DAG: s_mov_b32 s19, 0xe8f000
; VI-DAG: s_mov_b32 s19, 0xe80000
; GCN-DAG: s_mov_b32 s11, s12
; GCN-DAG: s_mov_b32 s12, SCRATCH_RSRC_DWORD0
; GCN-DAG: s_mov_b32 s13, SCRATCH_RSRC_DWORD1
; GCN-DAG: s_mov_b32 s14, -1
; SI-DAG: s_mov_b32 s15, 0xe8f000
; VI-DAG: s_mov_b32 s15, 0xe80000
; s13 is offset system SGPR
; GCN: buffer_store_dword {{v[0-9]+}}, off, s[16:19], s13 offset:{{[0-9]+}} ; 16-byte Folded Spill
; GCN: buffer_load_dword v{{[0-9]+}}, off, s[16:19], s13 offset:{{[0-9]+}} ; 16-byte Folded Reload
; s11 is offset system SGPR
; GCN: buffer_store_dword {{v[0-9]+}}, off, s[12:15], s11 offset:{{[0-9]+}} ; 16-byte Folded Spill
; GCN: buffer_load_dword v{{[0-9]+}}, off, s[12:15], s11 offset:{{[0-9]+}} ; 16-byte Folded Reload
; GCN: NumVgprs: 256
; GCN: ScratchSize: 1024