mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-16 08:29:08 +00:00
Add BasicInliner interface.
This interface allows clients to inline bunch of functions with module level call graph information.:wq llvm-svn: 40486
This commit is contained in:
parent
95a78a7963
commit
d7b401bafd
55
include/llvm/Transforms/Utils/BasicInliner.h
Normal file
55
include/llvm/Transforms/Utils/BasicInliner.h
Normal file
@ -0,0 +1,55 @@
|
||||
//===- BasicInliner.h - Basic function level inliner ------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by Devang Patel and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a simple function based inliner that does not use
|
||||
// call graph information.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef BASICINLINER_H
|
||||
#define BASICINLINER_H
|
||||
|
||||
#include "llvm/Transforms/Utils/InlineCost.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Function;
|
||||
class TargetData;
|
||||
class BasicInlinerImpl;
|
||||
|
||||
/// BasicInliner - BasicInliner provides function level inlining interface.
|
||||
/// Clients provide list of functions which are inline without using
|
||||
/// module level call graph information. Note that the BasicInliner is
|
||||
/// free to delete a function if it is inlined into all call sites.
|
||||
class BasicInliner {
|
||||
public:
|
||||
|
||||
BasicInliner(TargetData *T = NULL);
|
||||
~BasicInliner();
|
||||
|
||||
/// addFunction - Add function into the list of functions to process.
|
||||
/// All functions must be inserted using this interface before invoking
|
||||
/// inlineFunctions().
|
||||
void addFunction(Function *F);
|
||||
|
||||
/// neverInlineFunction - Sometimes a function is never to be inlined
|
||||
/// because of one or other reason.
|
||||
void neverInlineFunction(Function *F);
|
||||
|
||||
/// inlineFuctions - Walk all call sites in all functions supplied by
|
||||
/// client. Inline as many call sites as possible. Delete completely
|
||||
/// inlined functions.
|
||||
void inlineFunctions();
|
||||
|
||||
private:
|
||||
BasicInlinerImpl *Impl;
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
80
include/llvm/Transforms/Utils/InlineCost.h
Normal file
80
include/llvm/Transforms/Utils/InlineCost.h
Normal file
@ -0,0 +1,80 @@
|
||||
//===- InlineCost.cpp - Cost analysis for inliner ---------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements bottom-up inlining of functions into callees.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef INLINECOST_H
|
||||
#define INLINECOST_H
|
||||
|
||||
#include <set>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Value;
|
||||
class Function;
|
||||
class CallSite;
|
||||
|
||||
/// InlineCostAnalyzer - Cost analyzer used by inliner.
|
||||
class InlineCostAnalyzer {
|
||||
struct ArgInfo {
|
||||
public:
|
||||
unsigned ConstantWeight;
|
||||
unsigned AllocaWeight;
|
||||
|
||||
ArgInfo(unsigned CWeight, unsigned AWeight)
|
||||
: ConstantWeight(CWeight), AllocaWeight(AWeight) {}
|
||||
};
|
||||
|
||||
// FunctionInfo - For each function, calculate the size of it in blocks and
|
||||
// instructions.
|
||||
struct FunctionInfo {
|
||||
// NumInsts, NumBlocks - Keep track of how large each function is, which is
|
||||
// used to estimate the code size cost of inlining it.
|
||||
unsigned NumInsts, NumBlocks;
|
||||
|
||||
// ArgumentWeights - Each formal argument of the function is inspected to
|
||||
// see if it is used in any contexts where making it a constant or alloca
|
||||
// would reduce the code size. If so, we add some value to the argument
|
||||
// entry here.
|
||||
std::vector<ArgInfo> ArgumentWeights;
|
||||
|
||||
FunctionInfo() : NumInsts(0), NumBlocks(0) {}
|
||||
|
||||
/// analyzeFunction - Fill in the current structure with information gleaned
|
||||
/// from the specified function.
|
||||
void analyzeFunction(Function *F);
|
||||
|
||||
// CountCodeReductionForConstant - Figure out an approximation for how many
|
||||
// instructions will be constant folded if the specified value is constant.
|
||||
//
|
||||
unsigned CountCodeReductionForConstant(Value *V);
|
||||
|
||||
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
||||
// the function will be if it is inlined into a context where an argument
|
||||
// becomes an alloca.
|
||||
//
|
||||
unsigned CountCodeReductionForAlloca(Value *V);
|
||||
};
|
||||
|
||||
std::map<const Function *, FunctionInfo>CachedFunctionInfo;
|
||||
|
||||
public:
|
||||
|
||||
// getInlineCost - The heuristic used to determine if we should inline the
|
||||
// function call or not.
|
||||
//
|
||||
int getInlineCost(CallSite CS, std::set<const Function *> &NeverInline);
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@ -22,46 +22,22 @@
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Transforms/IPO.h"
|
||||
#include "llvm/Transforms/IPO/InlinerPass.h"
|
||||
#include "llvm/Transforms/Utils/InlineCost.h"
|
||||
#include <set>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
struct VISIBILITY_HIDDEN ArgInfo {
|
||||
unsigned ConstantWeight;
|
||||
unsigned AllocaWeight;
|
||||
|
||||
ArgInfo(unsigned CWeight, unsigned AWeight)
|
||||
: ConstantWeight(CWeight), AllocaWeight(AWeight) {}
|
||||
};
|
||||
|
||||
// FunctionInfo - For each function, calculate the size of it in blocks and
|
||||
// instructions.
|
||||
struct VISIBILITY_HIDDEN FunctionInfo {
|
||||
// NumInsts, NumBlocks - Keep track of how large each function is, which is
|
||||
// used to estimate the code size cost of inlining it.
|
||||
unsigned NumInsts, NumBlocks;
|
||||
|
||||
// ArgumentWeights - Each formal argument of the function is inspected to
|
||||
// see if it is used in any contexts where making it a constant or alloca
|
||||
// would reduce the code size. If so, we add some value to the argument
|
||||
// entry here.
|
||||
std::vector<ArgInfo> ArgumentWeights;
|
||||
|
||||
FunctionInfo() : NumInsts(0), NumBlocks(0) {}
|
||||
|
||||
/// analyzeFunction - Fill in the current structure with information gleaned
|
||||
/// from the specified function.
|
||||
void analyzeFunction(Function *F);
|
||||
};
|
||||
|
||||
class VISIBILITY_HIDDEN SimpleInliner : public Inliner {
|
||||
std::map<const Function*, FunctionInfo> CachedFunctionInfo;
|
||||
std::set<const Function*> NeverInline; // Functions that are never inlined
|
||||
InlineCostAnalyzer CA;
|
||||
public:
|
||||
SimpleInliner() : Inliner(&ID) {}
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
int getInlineCost(CallSite CS);
|
||||
int getInlineCost(CallSite CS) {
|
||||
return CA.getInlineCost(CS, NeverInline);
|
||||
}
|
||||
virtual bool doInitialization(CallGraph &CG);
|
||||
};
|
||||
char SimpleInliner::ID = 0;
|
||||
@ -70,223 +46,6 @@ namespace {
|
||||
|
||||
Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
|
||||
|
||||
// CountCodeReductionForConstant - Figure out an approximation for how many
|
||||
// instructions will be constant folded if the specified value is constant.
|
||||
//
|
||||
static unsigned CountCodeReductionForConstant(Value *V) {
|
||||
unsigned Reduction = 0;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
|
||||
if (isa<BranchInst>(*UI))
|
||||
Reduction += 40; // Eliminating a conditional branch is a big win
|
||||
else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
|
||||
// Eliminating a switch is a big win, proportional to the number of edges
|
||||
// deleted.
|
||||
Reduction += (SI->getNumSuccessors()-1) * 40;
|
||||
else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
Reduction += CI->getCalledValue() == V ? 500 : 0;
|
||||
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
Reduction += II->getCalledValue() == V ? 500 : 0;
|
||||
} else {
|
||||
// Figure out if this instruction will be removed due to simple constant
|
||||
// propagation.
|
||||
Instruction &Inst = cast<Instruction>(**UI);
|
||||
bool AllOperandsConstant = true;
|
||||
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
||||
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
||||
AllOperandsConstant = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (AllOperandsConstant) {
|
||||
// We will get to remove this instruction...
|
||||
Reduction += 7;
|
||||
|
||||
// And any other instructions that use it which become constants
|
||||
// themselves.
|
||||
Reduction += CountCodeReductionForConstant(&Inst);
|
||||
}
|
||||
}
|
||||
|
||||
return Reduction;
|
||||
}
|
||||
|
||||
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
||||
// the function will be if it is inlined into a context where an argument
|
||||
// becomes an alloca.
|
||||
//
|
||||
static unsigned CountCodeReductionForAlloca(Value *V) {
|
||||
if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
|
||||
unsigned Reduction = 0;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
||||
Instruction *I = cast<Instruction>(*UI);
|
||||
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
||||
Reduction += 10;
|
||||
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
||||
// If the GEP has variable indices, we won't be able to do much with it.
|
||||
for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
|
||||
I != E; ++I)
|
||||
if (!isa<Constant>(*I)) return 0;
|
||||
Reduction += CountCodeReductionForAlloca(GEP)+15;
|
||||
} else {
|
||||
// If there is some other strange instruction, we're not going to be able
|
||||
// to do much if we inline this.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return Reduction;
|
||||
}
|
||||
|
||||
/// analyzeFunction - Fill in the current structure with information gleaned
|
||||
/// from the specified function.
|
||||
void FunctionInfo::analyzeFunction(Function *F) {
|
||||
unsigned NumInsts = 0, NumBlocks = 0;
|
||||
|
||||
// Look at the size of the callee. Each basic block counts as 20 units, and
|
||||
// each instruction counts as 10.
|
||||
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
||||
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
|
||||
II != E; ++II) {
|
||||
if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
|
||||
|
||||
// Noop casts, including ptr <-> int, don't count.
|
||||
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
|
||||
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
|
||||
isa<PtrToIntInst>(CI))
|
||||
continue;
|
||||
} else if (const GetElementPtrInst *GEPI =
|
||||
dyn_cast<GetElementPtrInst>(II)) {
|
||||
// If a GEP has all constant indices, it will probably be folded with
|
||||
// a load/store.
|
||||
bool AllConstant = true;
|
||||
for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
|
||||
if (!isa<ConstantInt>(GEPI->getOperand(i))) {
|
||||
AllConstant = false;
|
||||
break;
|
||||
}
|
||||
if (AllConstant) continue;
|
||||
}
|
||||
|
||||
++NumInsts;
|
||||
}
|
||||
|
||||
++NumBlocks;
|
||||
}
|
||||
|
||||
this->NumBlocks = NumBlocks;
|
||||
this->NumInsts = NumInsts;
|
||||
|
||||
// Check out all of the arguments to the function, figuring out how much
|
||||
// code can be eliminated if one of the arguments is a constant.
|
||||
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
||||
ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
|
||||
CountCodeReductionForAlloca(I)));
|
||||
}
|
||||
|
||||
|
||||
// getInlineCost - The heuristic used to determine if we should inline the
|
||||
// function call or not.
|
||||
//
|
||||
int SimpleInliner::getInlineCost(CallSite CS) {
|
||||
Instruction *TheCall = CS.getInstruction();
|
||||
Function *Callee = CS.getCalledFunction();
|
||||
const Function *Caller = TheCall->getParent()->getParent();
|
||||
|
||||
// Don't inline a directly recursive call.
|
||||
if (Caller == Callee ||
|
||||
// Don't inline functions which can be redefined at link-time to mean
|
||||
// something else. link-once linkage is ok though.
|
||||
Callee->hasWeakLinkage() ||
|
||||
|
||||
// Don't inline functions marked noinline.
|
||||
NeverInline.count(Callee))
|
||||
return 2000000000;
|
||||
|
||||
// InlineCost - This value measures how good of an inline candidate this call
|
||||
// site is to inline. A lower inline cost make is more likely for the call to
|
||||
// be inlined. This value may go negative.
|
||||
//
|
||||
int InlineCost = 0;
|
||||
|
||||
// If there is only one call of the function, and it has internal linkage,
|
||||
// make it almost guaranteed to be inlined.
|
||||
//
|
||||
if (Callee->hasInternalLinkage() && Callee->hasOneUse())
|
||||
InlineCost -= 30000;
|
||||
|
||||
// If this function uses the coldcc calling convention, prefer not to inline
|
||||
// it.
|
||||
if (Callee->getCallingConv() == CallingConv::Cold)
|
||||
InlineCost += 2000;
|
||||
|
||||
// If the instruction after the call, or if the normal destination of the
|
||||
// invoke is an unreachable instruction, the function is noreturn. As such,
|
||||
// there is little point in inlining this.
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
||||
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
||||
InlineCost += 10000;
|
||||
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
||||
InlineCost += 10000;
|
||||
|
||||
// Get information about the callee...
|
||||
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
||||
|
||||
// If we haven't calculated this information yet, do so now.
|
||||
if (CalleeFI.NumBlocks == 0)
|
||||
CalleeFI.analyzeFunction(Callee);
|
||||
|
||||
// Add to the inline quality for properties that make the call valuable to
|
||||
// inline. This includes factors that indicate that the result of inlining
|
||||
// the function will be optimizable. Currently this just looks at arguments
|
||||
// passed into the function.
|
||||
//
|
||||
unsigned ArgNo = 0;
|
||||
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
||||
I != E; ++I, ++ArgNo) {
|
||||
// Each argument passed in has a cost at both the caller and the callee
|
||||
// sides. This favors functions that take many arguments over functions
|
||||
// that take few arguments.
|
||||
InlineCost -= 20;
|
||||
|
||||
// If this is a function being passed in, it is very likely that we will be
|
||||
// able to turn an indirect function call into a direct function call.
|
||||
if (isa<Function>(I))
|
||||
InlineCost -= 100;
|
||||
|
||||
// If an alloca is passed in, inlining this function is likely to allow
|
||||
// significant future optimization possibilities (like scalar promotion, and
|
||||
// scalarization), so encourage the inlining of the function.
|
||||
//
|
||||
else if (isa<AllocaInst>(I)) {
|
||||
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
||||
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
|
||||
|
||||
// If this is a constant being passed into the function, use the argument
|
||||
// weights calculated for the callee to determine how much will be folded
|
||||
// away with this information.
|
||||
} else if (isa<Constant>(I)) {
|
||||
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
||||
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we have considered all of the factors that make the call site more
|
||||
// likely to be inlined, look at factors that make us not want to inline it.
|
||||
|
||||
// Don't inline into something too big, which would make it bigger. Here, we
|
||||
// count each basic block as a single unit.
|
||||
//
|
||||
InlineCost += Caller->size()/20;
|
||||
|
||||
|
||||
// Look at the size of the callee. Each basic block counts as 20 units, and
|
||||
// each instruction counts as 5.
|
||||
InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
|
||||
return InlineCost;
|
||||
}
|
||||
|
||||
// doInitialization - Initializes the vector of functions that have been
|
||||
// annotated with the noinline attribute.
|
||||
bool SimpleInliner::doInitialization(CallGraph &CG) {
|
||||
@ -321,3 +80,4 @@ bool SimpleInliner::doInitialization(CallGraph &CG) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
171
lib/Transforms/Utils/BasicInliner.cpp
Normal file
171
lib/Transforms/Utils/BasicInliner.cpp
Normal file
@ -0,0 +1,171 @@
|
||||
//===- BasicInliner.cpp - Basic function level inliner --------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by Devang Patel and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a simple function based inliner that does not use
|
||||
// call graph information.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "basicinliner"
|
||||
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Transforms/Utils/BasicInliner.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
cl::opt<unsigned>
|
||||
BasicInlineThreshold("inline-threshold", cl::Hidden, cl::init(200),
|
||||
cl::desc("Control the amount of basic inlining to perform (default = 200)"));
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
|
||||
/// BasicInlinerImpl - BasicInliner implemantation class. This hides
|
||||
/// container info, used by basic inliner, from public interface.
|
||||
struct VISIBILITY_HIDDEN BasicInlinerImpl {
|
||||
|
||||
BasicInlinerImpl(const BasicInlinerImpl&); // DO NOT IMPLEMENT
|
||||
void operator=(const BasicInlinerImpl&); // DO NO IMPLEMENT
|
||||
public:
|
||||
BasicInlinerImpl(TargetData *T) : TD(T) {}
|
||||
|
||||
/// addFunction - Add function into the list of functions to process.
|
||||
/// All functions must be inserted using this interface before invoking
|
||||
/// inlineFunctions().
|
||||
void addFunction(Function *F) {
|
||||
Functions.push_back(F);
|
||||
}
|
||||
|
||||
/// neverInlineFunction - Sometimes a function is never to be inlined
|
||||
/// because of one or other reason.
|
||||
void neverInlineFunction(Function *F) {
|
||||
NeverInline.insert(F);
|
||||
}
|
||||
|
||||
/// inlineFuctions - Walk all call sites in all functions supplied by
|
||||
/// client. Inline as many call sites as possible. Delete completely
|
||||
/// inlined functions.
|
||||
void inlineFunctions();
|
||||
|
||||
private:
|
||||
TargetData *TD;
|
||||
std::vector<Function *> Functions;
|
||||
std::set<const Function *> NeverInline;
|
||||
SmallPtrSet<Function *, 8> DeadFunctions;
|
||||
InlineCostAnalyzer CA;
|
||||
};
|
||||
|
||||
/// inlineFuctions - Walk all call sites in all functions supplied by
|
||||
/// client. Inline as many call sites as possible. Delete completely
|
||||
/// inlined functions.
|
||||
void BasicInlinerImpl::inlineFunctions() {
|
||||
|
||||
// Scan through and identify all call sites ahead of time so that we only
|
||||
// inline call sites in the original functions, not call sites that result
|
||||
// from inlining other functions.
|
||||
std::vector<CallSite> CallSites;
|
||||
|
||||
for (std::vector<Function *>::iterator FI = Functions.begin(),
|
||||
FE = Functions.end(); FI != FE; ++FI) {
|
||||
Function *F = *FI;
|
||||
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
|
||||
CallSite CS = CallSite::get(I);
|
||||
if (CS.getInstruction() && CS.getCalledFunction()
|
||||
&& !CS.getCalledFunction()->isDeclaration())
|
||||
CallSites.push_back(CS);
|
||||
}
|
||||
}
|
||||
|
||||
DOUT << ": " << CallSites.size() << " call sites.\n";
|
||||
|
||||
// Inline call sites.
|
||||
bool Changed = false;
|
||||
do {
|
||||
Changed = false;
|
||||
for (unsigned index = 0; index != CallSites.size() && !CallSites.empty(); ++index) {
|
||||
CallSite CS = CallSites[index];
|
||||
if (Function *Callee = CS.getCalledFunction()) {
|
||||
|
||||
// Eliminate calls taht are never inlinable.
|
||||
if (Callee->isDeclaration() ||
|
||||
CS.getInstruction()->getParent()->getParent() == Callee) {
|
||||
CallSites.erase(CallSites.begin() + index);
|
||||
--index;
|
||||
continue;
|
||||
}
|
||||
int InlineCost = CA.getInlineCost(CS, NeverInline);
|
||||
if (InlineCost >= (int) BasicInlineThreshold) {
|
||||
DOUT << " NOT Inlining: cost = " << InlineCost
|
||||
<< ", call: " << *CS.getInstruction();
|
||||
continue;
|
||||
}
|
||||
|
||||
DOUT << " Inlining: cost=" << InlineCost
|
||||
<<", call: " << *CS.getInstruction();
|
||||
|
||||
// Inline
|
||||
if (InlineFunction(CS, NULL, TD)) {
|
||||
if (Callee->use_empty() && Callee->hasInternalLinkage())
|
||||
DeadFunctions.insert(Callee);
|
||||
Changed = true;
|
||||
CallSites.erase(CallSites.begin() + index);
|
||||
--index;
|
||||
}
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
|
||||
// Remove completely inlined functions from module.
|
||||
for(SmallPtrSet<Function *, 8>::iterator I = DeadFunctions.begin(),
|
||||
E = DeadFunctions.end(); I != E; ++I) {
|
||||
Function *D = *I;
|
||||
Module *M = D->getParent();
|
||||
M->getFunctionList().remove(D);
|
||||
}
|
||||
}
|
||||
|
||||
BasicInliner::BasicInliner(TargetData *TD) {
|
||||
Impl = new BasicInlinerImpl(TD);
|
||||
}
|
||||
|
||||
BasicInliner::~BasicInliner() {
|
||||
delete Impl;
|
||||
}
|
||||
|
||||
/// addFunction - Add function into the list of functions to process.
|
||||
/// All functions must be inserted using this interface before invoking
|
||||
/// inlineFunctions().
|
||||
void BasicInliner::addFunction(Function *F) {
|
||||
Impl->addFunction(F);
|
||||
}
|
||||
|
||||
/// neverInlineFunction - Sometimes a function is never to be inlined because
|
||||
/// of one or other reason.
|
||||
void BasicInliner::neverInlineFunction(Function *F) {
|
||||
Impl->neverInlineFunction(F);
|
||||
}
|
||||
|
||||
/// inlineFuctions - Walk all call sites in all functions supplied by
|
||||
/// client. Inline as many call sites as possible. Delete completely
|
||||
/// inlined functions.
|
||||
void BasicInliner::inlineFunctions() {
|
||||
Impl->inlineFunctions();
|
||||
}
|
||||
|
||||
}
|
241
lib/Transforms/Utils/InlineCost.cpp
Normal file
241
lib/Transforms/Utils/InlineCost.cpp
Normal file
@ -0,0 +1,241 @@
|
||||
//===- InlineCoast.cpp - Cost analysis for inliner ------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements inline cost analysis.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
#include "llvm/Transforms/Utils/InlineCost.h"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
#include "llvm/CallingConv.h"
|
||||
#include "llvm/IntrinsicInst.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
// CountCodeReductionForConstant - Figure out an approximation for how many
|
||||
// instructions will be constant folded if the specified value is constant.
|
||||
//
|
||||
unsigned InlineCostAnalyzer::FunctionInfo::
|
||||
CountCodeReductionForConstant(Value *V) {
|
||||
unsigned Reduction = 0;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
|
||||
if (isa<BranchInst>(*UI))
|
||||
Reduction += 40; // Eliminating a conditional branch is a big win
|
||||
else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
|
||||
// Eliminating a switch is a big win, proportional to the number of edges
|
||||
// deleted.
|
||||
Reduction += (SI->getNumSuccessors()-1) * 40;
|
||||
else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
Reduction += CI->getCalledValue() == V ? 500 : 0;
|
||||
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
|
||||
// Turning an indirect call into a direct call is a BIG win
|
||||
Reduction += II->getCalledValue() == V ? 500 : 0;
|
||||
} else {
|
||||
// Figure out if this instruction will be removed due to simple constant
|
||||
// propagation.
|
||||
Instruction &Inst = cast<Instruction>(**UI);
|
||||
bool AllOperandsConstant = true;
|
||||
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
||||
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
||||
AllOperandsConstant = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (AllOperandsConstant) {
|
||||
// We will get to remove this instruction...
|
||||
Reduction += 7;
|
||||
|
||||
// And any other instructions that use it which become constants
|
||||
// themselves.
|
||||
Reduction += CountCodeReductionForConstant(&Inst);
|
||||
}
|
||||
}
|
||||
|
||||
return Reduction;
|
||||
}
|
||||
|
||||
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
||||
// the function will be if it is inlined into a context where an argument
|
||||
// becomes an alloca.
|
||||
//
|
||||
unsigned InlineCostAnalyzer::FunctionInfo::
|
||||
CountCodeReductionForAlloca(Value *V) {
|
||||
if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
|
||||
unsigned Reduction = 0;
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
||||
Instruction *I = cast<Instruction>(*UI);
|
||||
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
||||
Reduction += 10;
|
||||
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
||||
// If the GEP has variable indices, we won't be able to do much with it.
|
||||
for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
|
||||
I != E; ++I)
|
||||
if (!isa<Constant>(*I)) return 0;
|
||||
Reduction += CountCodeReductionForAlloca(GEP)+15;
|
||||
} else {
|
||||
// If there is some other strange instruction, we're not going to be able
|
||||
// to do much if we inline this.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return Reduction;
|
||||
}
|
||||
|
||||
/// analyzeFunction - Fill in the current structure with information gleaned
|
||||
/// from the specified function.
|
||||
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
|
||||
unsigned NumInsts = 0, NumBlocks = 0;
|
||||
|
||||
// Look at the size of the callee. Each basic block counts as 20 units, and
|
||||
// each instruction counts as 10.
|
||||
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
||||
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
|
||||
II != E; ++II) {
|
||||
if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
|
||||
|
||||
// Noop casts, including ptr <-> int, don't count.
|
||||
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
|
||||
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
|
||||
isa<PtrToIntInst>(CI))
|
||||
continue;
|
||||
} else if (const GetElementPtrInst *GEPI =
|
||||
dyn_cast<GetElementPtrInst>(II)) {
|
||||
// If a GEP has all constant indices, it will probably be folded with
|
||||
// a load/store.
|
||||
bool AllConstant = true;
|
||||
for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
|
||||
if (!isa<ConstantInt>(GEPI->getOperand(i))) {
|
||||
AllConstant = false;
|
||||
break;
|
||||
}
|
||||
if (AllConstant) continue;
|
||||
}
|
||||
|
||||
++NumInsts;
|
||||
}
|
||||
|
||||
++NumBlocks;
|
||||
}
|
||||
|
||||
this->NumBlocks = NumBlocks;
|
||||
this->NumInsts = NumInsts;
|
||||
|
||||
// Check out all of the arguments to the function, figuring out how much
|
||||
// code can be eliminated if one of the arguments is a constant.
|
||||
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
||||
ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
|
||||
CountCodeReductionForAlloca(I)));
|
||||
}
|
||||
|
||||
|
||||
|
||||
// getInlineCost - The heuristic used to determine if we should inline the
|
||||
// function call or not.
|
||||
//
|
||||
int InlineCostAnalyzer::getInlineCost(CallSite CS, std::set<const Function *> &NeverInline) {
|
||||
Instruction *TheCall = CS.getInstruction();
|
||||
Function *Callee = CS.getCalledFunction();
|
||||
const Function *Caller = TheCall->getParent()->getParent();
|
||||
|
||||
// Don't inline a directly recursive call.
|
||||
if (Caller == Callee ||
|
||||
// Don't inline functions which can be redefined at link-time to mean
|
||||
// something else. link-once linkage is ok though.
|
||||
Callee->hasWeakLinkage() ||
|
||||
|
||||
// Don't inline functions marked noinline.
|
||||
NeverInline.count(Callee))
|
||||
return 2000000000;
|
||||
|
||||
// InlineCost - This value measures how good of an inline candidate this call
|
||||
// site is to inline. A lower inline cost make is more likely for the call to
|
||||
// be inlined. This value may go negative.
|
||||
//
|
||||
int InlineCost = 0;
|
||||
|
||||
// If there is only one call of the function, and it has internal linkage,
|
||||
// make it almost guaranteed to be inlined.
|
||||
//
|
||||
if (Callee->hasInternalLinkage() && Callee->hasOneUse())
|
||||
InlineCost -= 30000;
|
||||
|
||||
// If this function uses the coldcc calling convention, prefer not to inline
|
||||
// it.
|
||||
if (Callee->getCallingConv() == CallingConv::Cold)
|
||||
InlineCost += 2000;
|
||||
|
||||
// If the instruction after the call, or if the normal destination of the
|
||||
// invoke is an unreachable instruction, the function is noreturn. As such,
|
||||
// there is little point in inlining this.
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
||||
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
||||
InlineCost += 10000;
|
||||
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
||||
InlineCost += 10000;
|
||||
|
||||
// Get information about the callee...
|
||||
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
||||
|
||||
// If we haven't calculated this information yet, do so now.
|
||||
if (CalleeFI.NumBlocks == 0)
|
||||
CalleeFI.analyzeFunction(Callee);
|
||||
|
||||
// Add to the inline quality for properties that make the call valuable to
|
||||
// inline. This includes factors that indicate that the result of inlining
|
||||
// the function will be optimizable. Currently this just looks at arguments
|
||||
// passed into the function.
|
||||
//
|
||||
unsigned ArgNo = 0;
|
||||
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
||||
I != E; ++I, ++ArgNo) {
|
||||
// Each argument passed in has a cost at both the caller and the callee
|
||||
// sides. This favors functions that take many arguments over functions
|
||||
// that take few arguments.
|
||||
InlineCost -= 20;
|
||||
|
||||
// If this is a function being passed in, it is very likely that we will be
|
||||
// able to turn an indirect function call into a direct function call.
|
||||
if (isa<Function>(I))
|
||||
InlineCost -= 100;
|
||||
|
||||
// If an alloca is passed in, inlining this function is likely to allow
|
||||
// significant future optimization possibilities (like scalar promotion, and
|
||||
// scalarization), so encourage the inlining of the function.
|
||||
//
|
||||
else if (isa<AllocaInst>(I)) {
|
||||
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
||||
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
|
||||
|
||||
// If this is a constant being passed into the function, use the argument
|
||||
// weights calculated for the callee to determine how much will be folded
|
||||
// away with this information.
|
||||
} else if (isa<Constant>(I)) {
|
||||
if (ArgNo < CalleeFI.ArgumentWeights.size())
|
||||
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we have considered all of the factors that make the call site more
|
||||
// likely to be inlined, look at factors that make us not want to inline it.
|
||||
|
||||
// Don't inline into something too big, which would make it bigger. Here, we
|
||||
// count each basic block as a single unit.
|
||||
//
|
||||
InlineCost += Caller->size()/20;
|
||||
|
||||
|
||||
// Look at the size of the callee. Each basic block counts as 20 units, and
|
||||
// each instruction counts as 5.
|
||||
InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
|
||||
return InlineCost;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user