[AArch64][SVE] Fold constant multiply of element count

Summary:
E.g.

  %0 = tail call i64 @llvm.aarch64.sve.cntw(i32 31)
  %mul = mul i64 %0, <const>

Should emit:

  cntw    x0, all, mul #<const>

For <const> in the range 1-16.

Patch by Kerry McLaughlin

Reviewers: sdesmalen, huntergr, dancgr, rengolin, efriedma

Reviewed By: sdesmalen

Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71014
This commit is contained in:
Cullen Rhodes 2019-12-04 14:20:33 +00:00
parent 650025e84c
commit d8d4261ca4
4 changed files with 126 additions and 1 deletions

View File

@ -169,6 +169,28 @@ public:
return SelectSVELogicalImm(N, VT, Imm); return SelectSVELogicalImm(N, VT, Imm);
} }
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
template<signed Min, signed Max, signed Scale, bool Shift>
bool SelectCntImm(SDValue N, SDValue &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
if (Shift)
MulImm = 1 << MulImm;
if ((MulImm % std::abs(Scale)) != 0)
return false;
MulImm /= Scale;
if ((MulImm >= Min) && (MulImm <= Max)) {
Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
return true;
}
return false;
}
/// Form sequences of consecutive 64/128-bit registers for use in NEON /// Form sequences of consecutive 64/128-bit registers for use in NEON
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
/// between 1 and 4 elements. If it contains a single element that is returned /// between 1 and 4 elements. If it contains a single element that is returned

View File

@ -9541,6 +9541,19 @@ AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
} }
static bool IsSVECntIntrinsic(SDValue S) {
switch(getIntrinsicID(S.getNode())) {
default:
break;
case Intrinsic::aarch64_sve_cntb:
case Intrinsic::aarch64_sve_cnth:
case Intrinsic::aarch64_sve_cntw:
case Intrinsic::aarch64_sve_cntd:
return true;
}
return false;
}
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI, TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) { const AArch64Subtarget *Subtarget) {
@ -9551,9 +9564,18 @@ static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
if (!isa<ConstantSDNode>(N->getOperand(1))) if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue(); return SDValue();
SDValue N0 = N->getOperand(0);
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
const APInt &ConstValue = C->getAPIntValue(); const APInt &ConstValue = C->getAPIntValue();
// Allow the scaling to be folded into the `cnt` instruction by preventing
// the scaling to be obscured here. This makes it easier to pattern match.
if (IsSVECntIntrinsic(N0) ||
(N0->getOpcode() == ISD::TRUNCATE &&
(IsSVECntIntrinsic(N0->getOperand(0)))))
if (ConstValue.sge(1) && ConstValue.sle(16))
return SDValue();
// Multiplication of a power of two plus/minus one can be done more // Multiplication of a power of two plus/minus one can be done more
// cheaply as as shift+add/sub. For now, this is true unilaterally. If // cheaply as as shift+add/sub. For now, this is true unilaterally. If
// future CPUs have a cheaper MADD instruction, this may need to be // future CPUs have a cheaper MADD instruction, this may need to be
@ -9564,7 +9586,6 @@ static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
// e.g. 6=3*2=(2+1)*2. // e.g. 6=3*2=(2+1)*2.
// TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
// which equals to (1+2)*16-(1+2). // which equals to (1+2)*16-(1+2).
SDValue N0 = N->getOperand(0);
// TrailingZeroes is used to test if the mul can be lowered to // TrailingZeroes is used to test if the mul can be lowered to
// shift+add+shift. // shift+add+shift.
unsigned TrailingZeroes = ConstValue.countTrailingZeros(); unsigned TrailingZeroes = ConstValue.countTrailingZeros();

View File

@ -244,6 +244,10 @@ def sve_incdec_imm : Operand<i32>, TImmLeaf<i32, [{
let DecoderMethod = "DecodeSVEIncDecImm"; let DecoderMethod = "DecodeSVEIncDecImm";
} }
// This allows i32 immediate extraction from i64 based arithmetic.
def sve_cnt_mul_imm : ComplexPattern<i32, 1, "SelectCntImm<1, 16, 1, false>">;
def sve_cnt_shl_imm : ComplexPattern<i32, 1, "SelectCntImm<1, 16, 1, true>">;
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// SVE PTrue - These are used extensively throughout the pattern matching so // SVE PTrue - These are used extensively throughout the pattern matching so
// it's important we define them first. // it's important we define them first.
@ -635,6 +639,12 @@ multiclass sve_int_count<bits<3> opc, string asm, SDPatternOperator op> {
def : InstAlias<asm # "\t$Rd", def : InstAlias<asm # "\t$Rd",
(!cast<Instruction>(NAME) GPR64:$Rd, 0b11111, 1), 2>; (!cast<Instruction>(NAME) GPR64:$Rd, 0b11111, 1), 2>;
def : Pat<(i64 (mul (op sve_pred_enum:$pattern), (sve_cnt_mul_imm i32:$imm))),
(!cast<Instruction>(NAME) sve_pred_enum:$pattern, sve_incdec_imm:$imm)>;
def : Pat<(i64 (shl (op sve_pred_enum:$pattern), (i64 (sve_cnt_shl_imm i32:$imm)))),
(!cast<Instruction>(NAME) sve_pred_enum:$pattern, sve_incdec_imm:$imm)>;
def : Pat<(i64 (op sve_pred_enum:$pattern)), def : Pat<(i64 (op sve_pred_enum:$pattern)),
(!cast<Instruction>(NAME) sve_pred_enum:$pattern, 1)>; (!cast<Instruction>(NAME) sve_pred_enum:$pattern, 1)>;
} }

View File

@ -12,6 +12,24 @@ define i64 @cntb() {
ret i64 %out ret i64 %out
} }
define i64 @cntb_mul3() {
; CHECK-LABEL: cntb_mul3:
; CHECK: cntb x0, vl6, mul #3
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntb(i32 6)
%out = mul i64 %cnt, 3
ret i64 %out
}
define i64 @cntb_mul4() {
; CHECK-LABEL: cntb_mul4:
; CHECK: cntb x0, vl8, mul #4
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntb(i32 8)
%out = mul i64 %cnt, 4
ret i64 %out
}
; ;
; CNTH ; CNTH
; ;
@ -24,6 +42,24 @@ define i64 @cnth() {
ret i64 %out ret i64 %out
} }
define i64 @cnth_mul5() {
; CHECK-LABEL: cnth_mul5:
; CHECK: cnth x0, vl7, mul #5
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cnth(i32 7)
%out = mul i64 %cnt, 5
ret i64 %out
}
define i64 @cnth_mul8() {
; CHECK-LABEL: cnth_mul8:
; CHECK: cnth x0, vl5, mul #8
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cnth(i32 5)
%out = mul i64 %cnt, 8
ret i64 %out
}
; ;
; CNTW ; CNTW
; ;
@ -36,6 +72,24 @@ define i64 @cntw() {
ret i64 %out ret i64 %out
} }
define i64 @cntw_mul11() {
; CHECK-LABEL: cntw_mul11:
; CHECK: cntw x0, vl8, mul #11
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntw(i32 8)
%out = mul i64 %cnt, 11
ret i64 %out
}
define i64 @cntw_mul2() {
; CHECK-LABEL: cntw_mul2:
; CHECK: cntw x0, vl6, mul #2
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntw(i32 6)
%out = mul i64 %cnt, 2
ret i64 %out
}
; ;
; CNTD ; CNTD
; ;
@ -48,6 +102,24 @@ define i64 @cntd() {
ret i64 %out ret i64 %out
} }
define i64 @cntd_mul15() {
; CHECK-LABEL: cntd_mul15:
; CHECK: cntd x0, vl16, mul #15
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntd(i32 9)
%out = mul i64 %cnt, 15
ret i64 %out
}
define i64 @cntd_mul16() {
; CHECK-LABEL: cntd_mul16:
; CHECK: cntd x0, vl32, mul #16
; CHECK-NEXT: ret
%cnt = call i64 @llvm.aarch64.sve.cntd(i32 10)
%out = mul i64 %cnt, 16
ret i64 %out
}
; ;
; CNTP ; CNTP
; ;