Added support for ARM disassembly to edis.

I also added a rule to the ARM target's Makefile to
build the ARM-specific instruction information table
for the enhanced disassembler.

I will add the test harness for all this stuff in
a separate commit.

llvm-svn: 100735
This commit is contained in:
Sean Callanan 2010-04-08 00:48:21 +00:00
parent 579e7eb423
commit dcd7a375dd
9 changed files with 682 additions and 289 deletions

@ -19,7 +19,7 @@
#ifndef LLVM_C_ENHANCEDDISASSEMBLY_H #ifndef LLVM_C_ENHANCEDDISASSEMBLY_H
#define LLVM_C_ENHANCEDDISASSEMBLY_H #define LLVM_C_ENHANCEDDISASSEMBLY_H
#include "llvm/System/DataTypes.h" #include <inttypes.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -55,7 +55,8 @@ typedef enum {
/*! @constant kEDAssemblySyntaxX86Intel Intel syntax for i386 and x86_64. */ /*! @constant kEDAssemblySyntaxX86Intel Intel syntax for i386 and x86_64. */
kEDAssemblySyntaxX86Intel = 0, kEDAssemblySyntaxX86Intel = 0,
/*! @constant kEDAssemblySyntaxX86ATT AT&T syntax for i386 and x86_64. */ /*! @constant kEDAssemblySyntaxX86ATT AT&T syntax for i386 and x86_64. */
kEDAssemblySyntaxX86ATT = 1 kEDAssemblySyntaxX86ATT = 1,
kEDAssemblySyntaxARMUAL = 2
} EDAssemblySyntax_t; } EDAssemblySyntax_t;
/*! /*!

@ -17,7 +17,7 @@ BUILT_SOURCES = ARMGenRegisterInfo.h.inc ARMGenRegisterNames.inc \
ARMGenInstrInfo.inc ARMGenAsmWriter.inc \ ARMGenInstrInfo.inc ARMGenAsmWriter.inc \
ARMGenDAGISel.inc ARMGenSubtarget.inc \ ARMGenDAGISel.inc ARMGenSubtarget.inc \
ARMGenCodeEmitter.inc ARMGenCallingConv.inc \ ARMGenCodeEmitter.inc ARMGenCallingConv.inc \
ARMGenDecoderTables.inc ARMGenDecoderTables.inc ARMGenEDInfo.inc
DIRS = AsmPrinter AsmParser Disassembler TargetInfo DIRS = AsmPrinter AsmParser Disassembler TargetInfo

@ -13,6 +13,9 @@
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "EDDisassembler.h"
#include "EDInst.h"
#include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAsmInfo.h"
@ -36,10 +39,8 @@
#include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSelect.h" #include "llvm/Target/TargetSelect.h"
#include "EDDisassembler.h"
#include "EDInst.h"
#include "../../lib/Target/X86/X86GenEDInfo.inc" #include "../../lib/Target/X86/X86GenEDInfo.inc"
#include "../../lib/Target/ARM/ARMGenEDInfo.inc"
using namespace llvm; using namespace llvm;
@ -55,6 +56,8 @@ struct InfoMap {
static struct InfoMap infomap[] = { static struct InfoMap infomap[] = {
{ Triple::x86, "i386-unknown-unknown", instInfoX86 }, { Triple::x86, "i386-unknown-unknown", instInfoX86 },
{ Triple::x86_64, "x86_64-unknown-unknown", instInfoX86 }, { Triple::x86_64, "x86_64-unknown-unknown", instInfoX86 },
{ Triple::arm, "arm-unknown-unknown", instInfoARM },
{ Triple::thumb, "thumb-unknown-unknown", instInfoARM },
{ Triple::InvalidArch, NULL, NULL } { Triple::InvalidArch, NULL, NULL }
}; };
@ -66,7 +69,7 @@ static const InfoMap *infoFromArch(Triple::ArchType arch) {
unsigned int infoIndex; unsigned int infoIndex;
for (infoIndex = 0; infomap[infoIndex].String != NULL; ++infoIndex) { for (infoIndex = 0; infomap[infoIndex].String != NULL; ++infoIndex) {
if(arch == infomap[infoIndex].Arch) if (arch == infomap[infoIndex].Arch)
return &infomap[infoIndex]; return &infomap[infoIndex];
} }
@ -95,6 +98,11 @@ static int getLLVMSyntaxVariant(Triple::ArchType arch,
return 1; return 1;
else else
return -1; return -1;
case kEDAssemblySyntaxARMUAL:
if (arch == Triple::arm || arch == Triple::thumb)
return 0;
else
return -1;
} }
} }
@ -112,6 +120,7 @@ void EDDisassembler::initialize() {
sInitialized = true; sInitialized = true;
BRINGUP_TARGET(X86) BRINGUP_TARGET(X86)
BRINGUP_TARGET(ARM)
} }
#undef BRINGUP_TARGET #undef BRINGUP_TARGET
@ -126,10 +135,9 @@ EDDisassembler *EDDisassembler::getDisassembler(Triple::ArchType arch,
if (i != sDisassemblers.end()) { if (i != sDisassemblers.end()) {
return i->second; return i->second;
} } else {
else {
EDDisassembler* sdd = new EDDisassembler(key); EDDisassembler* sdd = new EDDisassembler(key);
if(!sdd->valid()) { if (!sdd->valid()) {
delete sdd; delete sdd;
return NULL; return NULL;
} }
@ -150,12 +158,17 @@ EDDisassembler *EDDisassembler::getDisassembler(StringRef str,
} }
EDDisassembler::EDDisassembler(CPUKey &key) : EDDisassembler::EDDisassembler(CPUKey &key) :
Valid(false), ErrorString(), ErrorStream(ErrorString), Key(key) { Valid(false),
HasSemantics(false),
ErrorStream(nulls()),
Key(key) {
const InfoMap *infoMap = infoFromArch(key.Arch); const InfoMap *infoMap = infoFromArch(key.Arch);
if (!infoMap) if (!infoMap)
return; return;
InstInfos = infoMap->Info;
const char *triple = infoMap->String; const char *triple = infoMap->String;
int syntaxVariant = getLLVMSyntaxVariant(key.Arch, key.Syntax); int syntaxVariant = getLLVMSyntaxVariant(key.Arch, key.Syntax);
@ -183,6 +196,8 @@ EDDisassembler::EDDisassembler(CPUKey &key) :
if (!registerInfo) if (!registerInfo)
return; return;
initMaps(*registerInfo);
AsmInfo.reset(Tgt->createAsmInfo(tripleString)); AsmInfo.reset(Tgt->createAsmInfo(tripleString));
if (!AsmInfo) if (!AsmInfo)
@ -212,7 +227,7 @@ EDDisassembler::EDDisassembler(CPUKey &key) :
} }
EDDisassembler::~EDDisassembler() { EDDisassembler::~EDDisassembler() {
if(!valid()) if (!valid())
return; return;
} }
@ -230,10 +245,10 @@ namespace {
uint64_t getBase() const { return 0x0; } uint64_t getBase() const { return 0x0; }
uint64_t getExtent() const { return (uint64_t)-1; } uint64_t getExtent() const { return (uint64_t)-1; }
int readByte(uint64_t address, uint8_t *ptr) const { int readByte(uint64_t address, uint8_t *ptr) const {
if(!Callback) if (!Callback)
return -1; return -1;
if(Callback(ptr, address, Arg)) if (Callback(ptr, address, Arg))
return -1; return -1;
return 0; return 0;
@ -256,9 +271,10 @@ EDInst *EDDisassembler::createInst(EDByteReaderCallback byteReader,
ErrorStream)) { ErrorStream)) {
delete inst; delete inst;
return NULL; return NULL;
} } else {
else { const InstInfo *thisInstInfo;
const InstInfo *thisInstInfo = &InstInfos[inst->getOpcode()];
thisInstInfo = &InstInfos[inst->getOpcode()];
EDInst* sdInst = new EDInst(inst, byteSize, *this, thisInstInfo); EDInst* sdInst = new EDInst(inst, byteSize, *this, thisInstInfo);
return sdInst; return sdInst;
@ -276,8 +292,11 @@ void EDDisassembler::initMaps(const TargetRegisterInfo &registerInfo) {
RegRMap[registerName] = registerIndex; RegRMap[registerName] = registerIndex;
} }
if (Key.Arch == Triple::x86 || switch (Key.Arch) {
Key.Arch == Triple::x86_64) { default:
break;
case Triple::x86:
case Triple::x86_64:
stackPointers.insert(registerIDWithName("SP")); stackPointers.insert(registerIDWithName("SP"));
stackPointers.insert(registerIDWithName("ESP")); stackPointers.insert(registerIDWithName("ESP"));
stackPointers.insert(registerIDWithName("RSP")); stackPointers.insert(registerIDWithName("RSP"));
@ -285,6 +304,13 @@ void EDDisassembler::initMaps(const TargetRegisterInfo &registerInfo) {
programCounters.insert(registerIDWithName("IP")); programCounters.insert(registerIDWithName("IP"));
programCounters.insert(registerIDWithName("EIP")); programCounters.insert(registerIDWithName("EIP"));
programCounters.insert(registerIDWithName("RIP")); programCounters.insert(registerIDWithName("RIP"));
break;
case Triple::arm:
case Triple::thumb:
stackPointers.insert(registerIDWithName("SP"));
programCounters.insert(registerIDWithName("PC"));
break;
} }
} }
@ -329,6 +355,16 @@ int EDDisassembler::parseInst(SmallVectorImpl<MCParsedAsmOperand*> &operands,
const std::string &str) { const std::string &str) {
int ret = 0; int ret = 0;
switch (Key.Arch) {
default:
return -1;
case Triple::x86:
case Triple::x86_64:
case Triple::arm:
case Triple::thumb:
break;
}
const char *cStr = str.c_str(); const char *cStr = str.c_str();
MemoryBuffer *buf = MemoryBuffer::getMemBuffer(cStr, cStr + strlen(cStr)); MemoryBuffer *buf = MemoryBuffer::getMemBuffer(cStr, cStr + strlen(cStr));
@ -343,14 +379,14 @@ int EDDisassembler::parseInst(SmallVectorImpl<MCParsedAsmOperand*> &operands,
OwningPtr<TargetAsmParser> TargetParser(Tgt->createAsmParser(genericParser)); OwningPtr<TargetAsmParser> TargetParser(Tgt->createAsmParser(genericParser));
AsmToken OpcodeToken = genericParser.Lex(); AsmToken OpcodeToken = genericParser.Lex();
genericParser.Lex(); // consume next token, because specificParser expects us to
if(OpcodeToken.is(AsmToken::Identifier)) { if (OpcodeToken.is(AsmToken::Identifier)) {
instName = OpcodeToken.getString(); instName = OpcodeToken.getString();
instLoc = OpcodeToken.getLoc(); instLoc = OpcodeToken.getLoc();
if (TargetParser->ParseInstruction(instName, instLoc, operands)) if (TargetParser->ParseInstruction(instName, instLoc, operands))
ret = -1; ret = -1;
} } else {
else {
ret = -1; ret = -1;
} }

@ -113,13 +113,13 @@ struct EDDisassembler {
// Per-object members // // Per-object members //
//////////////////////// ////////////////////////
/// True only if the object has been fully and successfully initialized /// True only if the object has been successfully initialized
bool Valid; bool Valid;
/// True if the disassembler can provide semantic information
bool HasSemantics;
/// The string that stores disassembler errors from the backend /// The stream to write errors to
std::string ErrorString; llvm::raw_ostream &ErrorStream;
/// The stream that wraps the ErrorString
llvm::raw_string_ostream ErrorStream;
/// The architecture/syntax pair for the current architecture /// The architecture/syntax pair for the current architecture
CPUKey Key; CPUKey Key;
@ -180,6 +180,12 @@ struct EDDisassembler {
return Valid; return Valid;
} }
/// hasSemantics - reports whether the disassembler can provide operands and
/// tokens.
bool hasSemantics() {
return HasSemantics;
}
~EDDisassembler(); ~EDDisassembler();
/// createInst - creates and returns an instruction given a callback and /// createInst - creates and returns an instruction given a callback and

@ -81,14 +81,14 @@ unsigned EDInst::instID() {
bool EDInst::isBranch() { bool EDInst::isBranch() {
if (ThisInstInfo) if (ThisInstInfo)
return ThisInstInfo->instructionFlags & kInstructionFlagBranch; return ThisInstInfo->instructionType == kInstructionTypeBranch;
else else
return false; return false;
} }
bool EDInst::isMove() { bool EDInst::isMove() {
if (ThisInstInfo) if (ThisInstInfo)
return ThisInstInfo->instructionFlags & kInstructionFlagMove; return ThisInstInfo->instructionType == kInstructionTypeMove;
else else
return false; return false;
} }

@ -29,8 +29,7 @@ int EDGetDisassembler(EDDisassemblerRef *disassembler,
if (ret) { if (ret) {
*disassembler = ret; *disassembler = ret;
return 0; return 0;
} } else {
else {
return -1; return -1;
} }
} }
@ -39,7 +38,7 @@ int EDGetRegisterName(const char** regName,
EDDisassemblerRef disassembler, EDDisassemblerRef disassembler,
unsigned regID) { unsigned regID) {
const char* name = disassembler->nameWithRegisterID(regID); const char* name = disassembler->nameWithRegisterID(regID);
if(!name) if (!name)
return -1; return -1;
*regName = name; *regName = name;
return 0; return 0;
@ -63,10 +62,10 @@ unsigned int EDCreateInsts(EDInstRef *insts,
void *arg) { void *arg) {
unsigned int index; unsigned int index;
for (index = 0; index < count; index++) { for (index = 0; index < count; ++index) {
EDInst *inst = disassembler->createInst(byteReader, address, arg); EDInst *inst = disassembler->createInst(byteReader, address, arg);
if(!inst) if (!inst)
return index; return index;
insts[index] = inst; insts[index] = inst;
@ -134,42 +133,42 @@ int EDOperandIndexForToken(EDTokenRef token) {
} }
int EDTokenIsWhitespace(EDTokenRef token) { int EDTokenIsWhitespace(EDTokenRef token) {
if(token->type() == EDToken::kTokenWhitespace) if (token->type() == EDToken::kTokenWhitespace)
return 1; return 1;
else else
return 0; return 0;
} }
int EDTokenIsPunctuation(EDTokenRef token) { int EDTokenIsPunctuation(EDTokenRef token) {
if(token->type() == EDToken::kTokenPunctuation) if (token->type() == EDToken::kTokenPunctuation)
return 1; return 1;
else else
return 0; return 0;
} }
int EDTokenIsOpcode(EDTokenRef token) { int EDTokenIsOpcode(EDTokenRef token) {
if(token->type() == EDToken::kTokenOpcode) if (token->type() == EDToken::kTokenOpcode)
return 1; return 1;
else else
return 0; return 0;
} }
int EDTokenIsLiteral(EDTokenRef token) { int EDTokenIsLiteral(EDTokenRef token) {
if(token->type() == EDToken::kTokenLiteral) if (token->type() == EDToken::kTokenLiteral)
return 1; return 1;
else else
return 0; return 0;
} }
int EDTokenIsRegister(EDTokenRef token) { int EDTokenIsRegister(EDTokenRef token) {
if(token->type() == EDToken::kTokenRegister) if (token->type() == EDToken::kTokenRegister)
return 1; return 1;
else else
return 0; return 0;
} }
int EDTokenIsNegativeLiteral(EDTokenRef token) { int EDTokenIsNegativeLiteral(EDTokenRef token) {
if(token->type() != EDToken::kTokenLiteral) if (token->type() != EDToken::kTokenLiteral)
return -1; return -1;
return token->literalSign(); return token->literalSign();
@ -177,7 +176,7 @@ int EDTokenIsNegativeLiteral(EDTokenRef token) {
int EDLiteralTokenAbsoluteValue(uint64_t *value, int EDLiteralTokenAbsoluteValue(uint64_t *value,
EDTokenRef token) { EDTokenRef token) {
if(token->type() != EDToken::kTokenLiteral) if (token->type() != EDToken::kTokenLiteral)
return -1; return -1;
return token->literalAbsoluteValue(*value); return token->literalAbsoluteValue(*value);
@ -185,7 +184,7 @@ int EDLiteralTokenAbsoluteValue(uint64_t *value,
int EDRegisterTokenValue(unsigned *registerID, int EDRegisterTokenValue(unsigned *registerID,
EDTokenRef token) { EDTokenRef token) {
if(token->type() != EDToken::kTokenRegister) if (token->type() != EDToken::kTokenRegister)
return -1; return -1;
return token->registerID(*registerID); return token->registerID(*registerID);
@ -215,7 +214,7 @@ int EDOperandIsMemory(EDOperandRef operand) {
int EDRegisterOperandValue(unsigned *value, int EDRegisterOperandValue(unsigned *value,
EDOperandRef operand) { EDOperandRef operand) {
if(!operand->isRegister()) if (!operand->isRegister())
return -1; return -1;
*value = operand->regVal(); *value = operand->regVal();
return 0; return 0;
@ -223,7 +222,7 @@ int EDRegisterOperandValue(unsigned *value,
int EDImmediateOperandValue(uint64_t *value, int EDImmediateOperandValue(uint64_t *value,
EDOperandRef operand) { EDOperandRef operand) {
if(!operand->isImmediate()) if (!operand->isImmediate())
return -1; return -1;
*value = operand->immediateVal(); *value = operand->immediateVal();
return 0; return 0;

@ -31,26 +31,77 @@ EDOperand::EDOperand(const EDDisassembler &disassembler,
MCOpIndex(mcOpIndex) { MCOpIndex(mcOpIndex) {
unsigned int numMCOperands = 0; unsigned int numMCOperands = 0;
if(Disassembler.Key.Arch == Triple::x86 || if (Disassembler.Key.Arch == Triple::x86 ||
Disassembler.Key.Arch == Triple::x86_64) { Disassembler.Key.Arch == Triple::x86_64) {
uint8_t operandFlags = inst.ThisInstInfo->operandFlags[opIndex]; uint8_t operandType = inst.ThisInstInfo->operandTypes[opIndex];
if (operandFlags & kOperandFlagImmediate) { switch (operandType) {
default:
break;
case kOperandTypeImmediate:
numMCOperands = 1; numMCOperands = 1;
} break;
else if (operandFlags & kOperandFlagRegister) { case kOperandTypeRegister:
numMCOperands = 1; numMCOperands = 1;
} break;
else if (operandFlags & kOperandFlagMemory) { case kOperandTypeX86Memory:
if (operandFlags & kOperandFlagPCRelative) {
numMCOperands = 1;
}
else {
numMCOperands = 5; numMCOperands = 5;
} break;
} case kOperandTypeX86EffectiveAddress:
else if (operandFlags & kOperandFlagEffectiveAddress) {
numMCOperands = 4; numMCOperands = 4;
break;
case kOperandTypeX86PCRelative:
numMCOperands = 1;
break;
}
}
else if (Disassembler.Key.Arch == Triple::arm ||
Disassembler.Key.Arch == Triple::thumb) {
uint8_t operandType = inst.ThisInstInfo->operandTypes[opIndex];
switch (operandType) {
default:
case kOperandTypeARMRegisterList:
break;
case kOperandTypeImmediate:
case kOperandTypeRegister:
case kOperandTypeARMBranchTarget:
case kOperandTypeARMSoImm:
case kOperandTypeThumb2SoImm:
case kOperandTypeARMSoImm2Part:
case kOperandTypeARMPredicate:
case kOperandTypeThumbITMask:
case kOperandTypeThumb2AddrModeImm8Offset:
case kOperandTypeARMTBAddrMode:
case kOperandTypeThumb2AddrModeImm8s4Offset:
numMCOperands = 1;
break;
case kOperandTypeThumb2SoReg:
case kOperandTypeARMAddrMode2Offset:
case kOperandTypeARMAddrMode3Offset:
case kOperandTypeARMAddrMode4:
case kOperandTypeARMAddrMode5:
case kOperandTypeARMAddrModePC:
case kOperandTypeThumb2AddrModeImm8:
case kOperandTypeThumb2AddrModeImm12:
case kOperandTypeThumb2AddrModeImm8s4:
case kOperandTypeThumbAddrModeRR:
case kOperandTypeThumbAddrModeSP:
numMCOperands = 2;
break;
case kOperandTypeARMSoReg:
case kOperandTypeARMAddrMode2:
case kOperandTypeARMAddrMode3:
case kOperandTypeThumb2AddrModeSoReg:
case kOperandTypeThumbAddrModeS1:
case kOperandTypeThumbAddrModeS2:
case kOperandTypeThumbAddrModeS4:
case kOperandTypeARMAddrMode6Offset:
numMCOperands = 3;
break;
case kOperandTypeARMAddrMode6:
numMCOperands = 4;
break;
} }
} }
@ -63,21 +114,26 @@ EDOperand::~EDOperand() {
int EDOperand::evaluate(uint64_t &result, int EDOperand::evaluate(uint64_t &result,
EDRegisterReaderCallback callback, EDRegisterReaderCallback callback,
void *arg) { void *arg) {
if (Disassembler.Key.Arch == Triple::x86 || uint8_t operandType = Inst.ThisInstInfo->operandTypes[OpIndex];
Disassembler.Key.Arch == Triple::x86_64) {
uint8_t operandFlags = Inst.ThisInstInfo->operandFlags[OpIndex];
if (operandFlags & kOperandFlagImmediate) { switch (Disassembler.Key.Arch) {
default:
return -1;
case Triple::x86:
case Triple::x86_64:
switch (operandType) {
default:
return -1;
case kOperandTypeImmediate:
result = Inst.Inst->getOperand(MCOpIndex).getImm(); result = Inst.Inst->getOperand(MCOpIndex).getImm();
return 0; return 0;
} case kOperandTypeRegister:
if (operandFlags & kOperandFlagRegister) { {
unsigned reg = Inst.Inst->getOperand(MCOpIndex).getReg(); unsigned reg = Inst.Inst->getOperand(MCOpIndex).getReg();
return callback(&result, reg, arg); return callback(&result, reg, arg);
} }
if (operandFlags & kOperandFlagMemory || case kOperandTypeX86PCRelative:
operandFlags & kOperandFlagEffectiveAddress){ {
if(operandFlags & kOperandFlagPCRelative) {
int64_t displacement = Inst.Inst->getOperand(MCOpIndex).getImm(); int64_t displacement = Inst.Inst->getOperand(MCOpIndex).getImm();
uint64_t ripVal; uint64_t ripVal;
@ -90,7 +146,9 @@ int EDOperand::evaluate(uint64_t &result,
result = ripVal + displacement; result = ripVal + displacement;
return 0; return 0;
} }
else { case kOperandTypeX86Memory:
case kOperandTypeX86EffectiveAddress:
{
unsigned baseReg = Inst.Inst->getOperand(MCOpIndex).getReg(); unsigned baseReg = Inst.Inst->getOperand(MCOpIndex).getReg();
uint64_t scaleAmount = Inst.Inst->getOperand(MCOpIndex+1).getImm(); uint64_t scaleAmount = Inst.Inst->getOperand(MCOpIndex+1).getImm();
unsigned indexReg = Inst.Inst->getOperand(MCOpIndex+2).getReg(); unsigned indexReg = Inst.Inst->getOperand(MCOpIndex+2).getReg();
@ -99,14 +157,14 @@ int EDOperand::evaluate(uint64_t &result,
uint64_t addr = 0; uint64_t addr = 0;
if(baseReg) { if (baseReg) {
uint64_t baseVal; uint64_t baseVal;
if (callback(&baseVal, baseReg, arg)) if (callback(&baseVal, baseReg, arg))
return -1; return -1;
addr += baseVal; addr += baseVal;
} }
if(indexReg) { if (indexReg) {
uint64_t indexVal; uint64_t indexVal;
if (callback(&indexVal, indexReg, arg)) if (callback(&indexVal, indexReg, arg))
return -1; return -1;
@ -119,14 +177,40 @@ int EDOperand::evaluate(uint64_t &result,
return 0; return 0;
} }
} }
break;
case Triple::arm:
case Triple::thumb:
switch (operandType) {
default:
return -1; return -1;
case kOperandTypeImmediate:
result = Inst.Inst->getOperand(MCOpIndex).getImm();
return 0;
case kOperandTypeRegister:
{
unsigned reg = Inst.Inst->getOperand(MCOpIndex).getReg();
return callback(&result, reg, arg);
}
case kOperandTypeARMBranchTarget:
{
int64_t displacement = Inst.Inst->getOperand(MCOpIndex).getImm();
uint64_t pcVal;
if (callback(&pcVal, Disassembler.registerIDWithName("PC"), arg))
return -1;
result = pcVal + displacement;
return 0;
}
}
} }
return -1; return -1;
} }
int EDOperand::isRegister() { int EDOperand::isRegister() {
return(Inst.ThisInstInfo->operandFlags[OpIndex] & kOperandFlagRegister); return(Inst.ThisInstInfo->operandFlags[OpIndex] == kOperandTypeRegister);
} }
unsigned EDOperand::regVal() { unsigned EDOperand::regVal() {
@ -134,7 +218,7 @@ unsigned EDOperand::regVal() {
} }
int EDOperand::isImmediate() { int EDOperand::isImmediate() {
return(Inst.ThisInstInfo->operandFlags[OpIndex] & kOperandFlagImmediate); return(Inst.ThisInstInfo->operandFlags[OpIndex] == kOperandTypeImmediate);
} }
uint64_t EDOperand::immediateVal() { uint64_t EDOperand::immediateVal() {
@ -142,7 +226,33 @@ uint64_t EDOperand::immediateVal() {
} }
int EDOperand::isMemory() { int EDOperand::isMemory() {
return(Inst.ThisInstInfo->operandFlags[OpIndex] & kOperandFlagMemory); switch (Inst.ThisInstInfo->operandFlags[OpIndex]) {
default:
return 0;
case kOperandTypeX86Memory:
case kOperandTypeARMSoReg:
case kOperandTypeARMSoImm:
case kOperandTypeARMAddrMode2:
case kOperandTypeARMAddrMode2Offset:
case kOperandTypeARMAddrMode3:
case kOperandTypeARMAddrMode3Offset:
case kOperandTypeARMAddrMode4:
case kOperandTypeARMAddrMode5:
case kOperandTypeARMAddrMode6:
case kOperandTypeARMAddrModePC:
case kOperandTypeThumbAddrModeS1:
case kOperandTypeThumbAddrModeS2:
case kOperandTypeThumbAddrModeS4:
case kOperandTypeThumbAddrModeRR:
case kOperandTypeThumbAddrModeSP:
case kOperandTypeThumb2SoImm:
case kOperandTypeThumb2AddrModeImm8:
case kOperandTypeThumb2AddrModeImm8Offset:
case kOperandTypeThumb2AddrModeImm12:
case kOperandTypeThumb2AddrModeSoReg:
case kOperandTypeThumb2AddrModeImm8s4:
return 1;
}
} }
#ifdef __BLOCKS__ #ifdef __BLOCKS__

@ -68,20 +68,20 @@ int EDToken::operandID() const {
} }
int EDToken::literalSign() const { int EDToken::literalSign() const {
if(Type != kTokenLiteral) if (Type != kTokenLiteral)
return -1; return -1;
return (LiteralSign ? 1 : 0); return (LiteralSign ? 1 : 0);
} }
int EDToken::literalAbsoluteValue(uint64_t &value) const { int EDToken::literalAbsoluteValue(uint64_t &value) const {
if(Type != kTokenLiteral) if (Type != kTokenLiteral)
return -1; return -1;
value = LiteralAbsoluteValue; value = LiteralAbsoluteValue;
return 0; return 0;
} }
int EDToken::registerID(unsigned &registerID) const { int EDToken::registerID(unsigned &registerID) const {
if(Type != kTokenRegister) if (Type != kTokenRegister)
return -1; return -1;
registerID = RegisterID; registerID = RegisterID;
return 0; return 0;
@ -94,7 +94,7 @@ int EDToken::tokenize(std::vector<EDToken*> &tokens,
SmallVector<MCParsedAsmOperand*, 5> parsedOperands; SmallVector<MCParsedAsmOperand*, 5> parsedOperands;
SmallVector<AsmToken, 10> asmTokens; SmallVector<AsmToken, 10> asmTokens;
if(disassembler.parseInst(parsedOperands, asmTokens, str)) if (disassembler.parseInst(parsedOperands, asmTokens, str))
return -1; return -1;
SmallVectorImpl<MCParsedAsmOperand*>::iterator operandIterator; SmallVectorImpl<MCParsedAsmOperand*>::iterator operandIterator;
@ -115,7 +115,7 @@ int EDToken::tokenize(std::vector<EDToken*> &tokens,
const char *tokenPointer = tokenLoc.getPointer(); const char *tokenPointer = tokenLoc.getPointer();
if(tokenPointer > wsPointer) { if (tokenPointer > wsPointer) {
unsigned long wsLength = tokenPointer - wsPointer; unsigned long wsLength = tokenPointer - wsPointer;
EDToken *whitespaceToken = new EDToken(StringRef(wsPointer, wsLength), EDToken *whitespaceToken = new EDToken(StringRef(wsPointer, wsLength),
@ -164,7 +164,7 @@ int EDToken::tokenize(std::vector<EDToken*> &tokens,
int64_t intVal = tokenIterator->getIntVal(); int64_t intVal = tokenIterator->getIntVal();
if(intVal < 0) if (intVal < 0)
token->makeLiteral(true, -intVal); token->makeLiteral(true, -intVal);
else else
token->makeLiteral(false, intVal); token->makeLiteral(false, intVal);
@ -182,14 +182,14 @@ int EDToken::tokenize(std::vector<EDToken*> &tokens,
} }
} }
if(operandIterator != parsedOperands.end() && if (operandIterator != parsedOperands.end() &&
tokenLoc.getPointer() >= tokenLoc.getPointer() >=
(*operandIterator)->getStartLoc().getPointer()) { (*operandIterator)->getStartLoc().getPointer()) {
/// operandIndex == 0 means the operand is the instruction (which the /// operandIndex == 0 means the operand is the instruction (which the
/// AsmParser treats as an operand but edis does not). We therefore skip /// AsmParser treats as an operand but edis does not). We therefore skip
/// operandIndex == 0 and subtract 1 from all other operand indices. /// operandIndex == 0 and subtract 1 from all other operand indices.
if(operandIndex > 0) if (operandIndex > 0)
token->setOperandID(operandOrder[operandIndex - 1]); token->setOperandID(operandOrder[operandIndex - 1]);
} }
@ -200,7 +200,7 @@ int EDToken::tokenize(std::vector<EDToken*> &tokens,
} }
int EDToken::getString(const char*& buf) { int EDToken::getString(const char*& buf) {
if(PermStr.length() == 0) { if (PermStr.length() == 0) {
PermStr = Str.str(); PermStr = Str.str();
} }
buf = PermStr.c_str(); buf = PermStr.c_str();

@ -23,10 +23,11 @@
#include "llvm/Support/Format.h" #include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h" #include "llvm/Support/raw_ostream.h"
#include <vector> #include <map>
#include <string> #include <string>
#include <vector>
#define MAX_OPERANDS 5 #define MAX_OPERANDS 13
#define MAX_SYNTAXES 2 #define MAX_SYNTAXES 2
using namespace llvm; using namespace llvm;
@ -54,9 +55,9 @@ namespace {
unsigned int index = 0; unsigned int index = 0;
unsigned int numEntries = Entries.size(); unsigned int numEntries = Entries.size();
for(index = 0; index < numEntries; ++index) { for (index = 0; index < numEntries; ++index) {
o.indent(i) << Entries[index]; o.indent(i) << Entries[index];
if(index < (numEntries - 1)) if (index < (numEntries - 1))
o << ","; o << ",";
o << "\n"; o << "\n";
} }
@ -88,24 +89,24 @@ namespace {
class StructEmitter { class StructEmitter {
private: private:
std::string Name; std::string Name;
std::vector<std::string> MemberTypes; typedef std::pair<const char*, const char*> member;
std::vector<std::string> MemberNames; std::vector< member > Members;
public: public:
StructEmitter(const char *N) : Name(N) { StructEmitter(const char *N) : Name(N) {
} }
void addMember(const char *t, const char *n) { void addMember(const char *t, const char *n) {
MemberTypes.push_back(std::string(t)); member m(t, n);
MemberNames.push_back(std::string(n)); Members.push_back(m);
} }
void emit(raw_ostream &o, unsigned int &i) { void emit(raw_ostream &o, unsigned int &i) {
o.indent(i) << "struct " << Name.c_str() << " {" << "\n"; o.indent(i) << "struct " << Name.c_str() << " {" << "\n";
i += 2; i += 2;
unsigned int index = 0; unsigned int index = 0;
unsigned int numMembers = MemberTypes.size(); unsigned int numMembers = Members.size();
for (index = 0; index < numMembers; ++index) { for (index = 0; index < numMembers; ++index) {
o.indent(i) << MemberTypes[index] << " " << MemberNames[index] << ";"; o.indent(i) << Members[index].first << " ";
o << "\n"; o.indent(i) << Members[index].second << ";" << "\n";
} }
i -= 2; i -= 2;
@ -121,47 +122,87 @@ namespace {
class LiteralConstantEmitter : public ConstantEmitter { class LiteralConstantEmitter : public ConstantEmitter {
private: private:
std::string Literal; bool IsNumber;
union {
int Number;
const char* String;
};
public: public:
LiteralConstantEmitter(const char *literal) : Literal(literal) { LiteralConstantEmitter(const char *string) :
IsNumber(false),
String(string) {
} }
LiteralConstantEmitter(int literal) { LiteralConstantEmitter(int number = 0) :
char buf[256]; IsNumber(true),
snprintf(buf, 256, "%d", literal); Number(number) {
Literal = buf; }
void set(const char *string) {
IsNumber = false;
Number = 0;
String = string;
}
void set(int number) {
IsNumber = true;
String = NULL;
Number = number;
}
bool is(const char *string) {
return !strcmp(String, string);
} }
void emit(raw_ostream &o, unsigned int &i) { void emit(raw_ostream &o, unsigned int &i) {
o << Literal; if (IsNumber)
o << Number;
else
o << String;
} }
}; };
class CompoundConstantEmitter : public ConstantEmitter { class CompoundConstantEmitter : public ConstantEmitter {
private: private:
std::vector<ConstantEmitter*> Entries; unsigned int Padding;
std::vector<ConstantEmitter *> Entries;
public: public:
CompoundConstantEmitter() { CompoundConstantEmitter(unsigned int padding = 0) : Padding(padding) {
}
~CompoundConstantEmitter() {
unsigned int index;
unsigned int numEntries = Entries.size();
for (index = 0; index < numEntries; ++index) {
delete Entries[index];
}
} }
CompoundConstantEmitter &addEntry(ConstantEmitter *e) { CompoundConstantEmitter &addEntry(ConstantEmitter *e) {
Entries.push_back(e); Entries.push_back(e);
return *this; return *this;
} }
~CompoundConstantEmitter() {
while (Entries.size()) {
ConstantEmitter *entry = Entries.back();
Entries.pop_back();
delete entry;
}
}
void emit(raw_ostream &o, unsigned int &i) { void emit(raw_ostream &o, unsigned int &i) {
o << "{" << "\n"; o << "{" << "\n";
i += 2; i += 2;
unsigned int index; unsigned int index;
unsigned int numEntries = Entries.size(); unsigned int numEntries = Entries.size();
for (index = 0; index < numEntries; ++index) {
unsigned int numToPrint;
if (Padding) {
if (numEntries > Padding) {
fprintf(stderr, "%u entries but %u padding\n", numEntries, Padding);
llvm_unreachable("More entries than padding");
}
numToPrint = Padding;
} else {
numToPrint = numEntries;
}
for (index = 0; index < numToPrint; ++index) {
o.indent(i); o.indent(i);
if (index < numEntries)
Entries[index]->emit(o, i); Entries[index]->emit(o, i);
if (index < (numEntries - 1)) else
o << "-1";
if (index < (numToPrint - 1))
o << ","; o << ",";
o << "\n"; o << "\n";
} }
@ -226,40 +267,31 @@ void populateOperandOrder(CompoundConstantEmitter *operandOrder,
++operandIterator) { ++operandIterator) {
if (operandIterator->OperandType == if (operandIterator->OperandType ==
AsmWriterOperand::isMachineInstrOperand) { AsmWriterOperand::isMachineInstrOperand) {
char buf[2]; operandOrder->addEntry(
snprintf(buf, sizeof(buf), "%u", operandIterator->CGIOpNo); new LiteralConstantEmitter(operandIterator->CGIOpNo));
operandOrder->addEntry(new LiteralConstantEmitter(buf));
numArgs++; numArgs++;
} }
} }
for(; numArgs < MAX_OPERANDS; numArgs++) {
operandOrder->addEntry(new LiteralConstantEmitter("-1"));
}
} }
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
// Support functions for handling X86 instructions // // Support functions for handling X86 instructions //
///////////////////////////////////////////////////// /////////////////////////////////////////////////////
#define ADDFLAG(flag) flags->addEntry(flag) #define SET(flag) { type->set(flag); return 0; }
#define REG(str) if (name == str) { ADDFLAG("kOperandFlagRegister"); return 0; } #define REG(str) if (name == str) SET("kOperandTypeRegister");
#define MEM(str) if (name == str) { ADDFLAG("kOperandFlagMemory"); return 0; } #define MEM(str) if (name == str) SET("kOperandTypeX86Memory");
#define LEA(str) if (name == str) { ADDFLAG("kOperandFlagEffectiveAddress"); \ #define LEA(str) if (name == str) SET("kOperandTypeX86EffectiveAddress");
return 0; } #define IMM(str) if (name == str) SET("kOperandTypeImmediate");
#define IMM(str) if (name == str) { ADDFLAG("kOperandFlagImmediate"); \ #define PCR(str) if (name == str) SET("kOperandTypeX86PCRelative");
return 0; }
#define PCR(str) if (name == str) { ADDFLAG("kOperandFlagMemory"); \
ADDFLAG("kOperandFlagPCRelative"); \
return 0; }
/// X86FlagFromOpName - Processes the name of a single X86 operand (which is /// X86TypeFromOpName - Processes the name of a single X86 operand (which is
/// actually its type) and translates it into an operand flag /// actually its type) and translates it into an operand type
/// ///
/// @arg flags - The flags object to add the flag to /// @arg flags - The type object to set
/// @arg name - The name of the operand /// @arg name - The name of the operand
static int X86FlagFromOpName(FlagsConstantEmitter *flags, static int X86TypeFromOpName(LiteralConstantEmitter *type,
const std::string &name) { const std::string &name) {
REG("GR8"); REG("GR8");
REG("GR8_NOREX"); REG("GR8_NOREX");
@ -282,6 +314,19 @@ static int X86FlagFromOpName(FlagsConstantEmitter *flags,
REG("CONTROL_REG_32"); REG("CONTROL_REG_32");
REG("CONTROL_REG_64"); REG("CONTROL_REG_64");
IMM("i8imm");
IMM("i16imm");
IMM("i16i8imm");
IMM("i32imm");
IMM("i32imm_pcrel");
IMM("i32i8imm");
IMM("i64imm");
IMM("i64i8imm");
IMM("i64i32imm");
IMM("i64i32imm_pcrel");
IMM("SSECC");
// all R, I, R, I, R
MEM("i8mem"); MEM("i8mem");
MEM("i8mem_NOREX"); MEM("i8mem_NOREX");
MEM("i16mem"); MEM("i16mem");
@ -301,22 +346,12 @@ static int X86FlagFromOpName(FlagsConstantEmitter *flags,
MEM("f128mem"); MEM("f128mem");
MEM("opaque512mem"); MEM("opaque512mem");
// all R, I, R, I
LEA("lea32mem"); LEA("lea32mem");
LEA("lea64_32mem"); LEA("lea64_32mem");
LEA("lea64mem"); LEA("lea64mem");
IMM("i8imm"); // all I
IMM("i16imm");
IMM("i16i8imm");
IMM("i32imm");
IMM("i32imm_pcrel");
IMM("i32i8imm");
IMM("i64imm");
IMM("i64i8imm");
IMM("i64i32imm");
IMM("i64i32imm_pcrel");
IMM("SSECC");
PCR("brtarget8"); PCR("brtarget8");
PCR("offset8"); PCR("offset8");
PCR("offset16"); PCR("offset16");
@ -332,7 +367,8 @@ static int X86FlagFromOpName(FlagsConstantEmitter *flags,
#undef LEA #undef LEA
#undef IMM #undef IMM
#undef PCR #undef PCR
#undef ADDFLAG
#undef SET
/// X86PopulateOperands - Handles all the operands in an X86 instruction, adding /// X86PopulateOperands - Handles all the operands in an X86 instruction, adding
/// the appropriate flags to their descriptors /// the appropriate flags to their descriptors
@ -340,7 +376,7 @@ static int X86FlagFromOpName(FlagsConstantEmitter *flags,
/// @operandFlags - A reference the array of operand flag objects /// @operandFlags - A reference the array of operand flag objects
/// @inst - The instruction to use as a source of information /// @inst - The instruction to use as a source of information
static void X86PopulateOperands( static void X86PopulateOperands(
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS], LiteralConstantEmitter *(&operandTypes)[MAX_OPERANDS],
const CodeGenInstruction &inst) { const CodeGenInstruction &inst) {
if (!inst.TheDef->isSubClassOf("X86Inst")) if (!inst.TheDef->isSubClassOf("X86Inst"))
return; return;
@ -353,7 +389,7 @@ static void X86PopulateOperands(
inst.OperandList[index]; inst.OperandList[index];
Record &rec = *operandInfo.Rec; Record &rec = *operandInfo.Rec;
if (X86FlagFromOpName(operandFlags[index], rec.getName())) { if (X86TypeFromOpName(operandTypes[index], rec.getName())) {
errs() << "Operand type: " << rec.getName().c_str() << "\n"; errs() << "Operand type: " << rec.getName().c_str() << "\n";
errs() << "Operand name: " << operandInfo.Name.c_str() << "\n"; errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
errs() << "Instruction mame: " << inst.TheDef->getName().c_str() << "\n"; errs() << "Instruction mame: " << inst.TheDef->getName().c_str() << "\n";
@ -369,7 +405,8 @@ static void X86PopulateOperands(
/// between names and operand indices /// between names and operand indices
/// @opName - The name of the operand /// @opName - The name of the operand
/// @flag - The name of the flag to add /// @flag - The name of the flag to add
static inline void decorate1(FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS], static inline void decorate1(
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst, const CodeGenInstruction &inst,
const char *opName, const char *opName,
const char *opFlag) { const char *opFlag) {
@ -383,43 +420,44 @@ static inline void decorate1(FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS]
#define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag) #define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag)
#define MOV(source, target) { \ #define MOV(source, target) { \
instFlags.addEntry("kInstructionFlagMove"); \ instType.set("kInstructionTypeMove"); \
DECORATE1(source, "kOperandFlagSource"); \ DECORATE1(source, "kOperandFlagSource"); \
DECORATE1(target, "kOperandFlagTarget"); \ DECORATE1(target, "kOperandFlagTarget"); \
} }
#define BRANCH(target) { \ #define BRANCH(target) { \
instFlags.addEntry("kInstructionFlagBranch"); \ instType.set("kInstructionTypeBranch"); \
DECORATE1(target, "kOperandFlagTarget"); \ DECORATE1(target, "kOperandFlagTarget"); \
} }
#define PUSH(source) { \ #define PUSH(source) { \
instFlags.addEntry("kInstructionFlagPush"); \ instType.set("kInstructionTypePush"); \
DECORATE1(source, "kOperandFlagSource"); \ DECORATE1(source, "kOperandFlagSource"); \
} }
#define POP(target) { \ #define POP(target) { \
instFlags.addEntry("kInstructionFlagPop"); \ instType.set("kInstructionTypePop"); \
DECORATE1(target, "kOperandFlagTarget"); \ DECORATE1(target, "kOperandFlagTarget"); \
} }
#define CALL(target) { \ #define CALL(target) { \
instFlags.addEntry("kInstructionFlagCall"); \ instType.set("kInstructionTypeCall"); \
DECORATE1(target, "kOperandFlagTarget"); \ DECORATE1(target, "kOperandFlagTarget"); \
} }
#define RETURN() { \ #define RETURN() { \
instFlags.addEntry("kInstructionFlagReturn"); \ instType.set("kInstructionTypeReturn"); \
} }
/// X86ExtractSemantics - Performs various checks on the name of an X86 /// X86ExtractSemantics - Performs various checks on the name of an X86
/// instruction to determine what sort of an instruction it is and then adds /// instruction to determine what sort of an instruction it is and then adds
/// the appropriate flags to the instruction and its operands /// the appropriate flags to the instruction and its operands
/// ///
/// @arg instFlags - A reference to the flags for the instruction as a whole /// @arg instType - A reference to the type for the instruction as a whole
/// @arg operandFlags - A reference to the array of operand flag object pointers /// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst - A reference to the original instruction /// @arg inst - A reference to the original instruction
static void X86ExtractSemantics(FlagsConstantEmitter &instFlags, static void X86ExtractSemantics(
LiteralConstantEmitter &instType,
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS], FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst) { const CodeGenInstruction &inst) {
const std::string &name = inst.TheDef->getName(); const std::string &name = inst.TheDef->getName();
@ -427,33 +465,24 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
if (name.find("MOV") != name.npos) { if (name.find("MOV") != name.npos) {
if (name.find("MOV_V") != name.npos) { if (name.find("MOV_V") != name.npos) {
// ignore (this is a pseudoinstruction) // ignore (this is a pseudoinstruction)
} } else if (name.find("MASK") != name.npos) {
else if (name.find("MASK") != name.npos) {
// ignore (this is a masking move) // ignore (this is a masking move)
} } else if (name.find("r0") != name.npos) {
else if (name.find("r0") != name.npos) {
// ignore (this is a pseudoinstruction) // ignore (this is a pseudoinstruction)
} } else if (name.find("PS") != name.npos ||
else if (name.find("PS") != name.npos ||
name.find("PD") != name.npos) { name.find("PD") != name.npos) {
// ignore (this is a shuffling move) // ignore (this is a shuffling move)
} } else if (name.find("MOVS") != name.npos) {
else if (name.find("MOVS") != name.npos) {
// ignore (this is a string move) // ignore (this is a string move)
} } else if (name.find("_F") != name.npos) {
else if (name.find("_F") != name.npos) {
// TODO handle _F moves to ST(0) // TODO handle _F moves to ST(0)
} } else if (name.find("a") != name.npos) {
else if (name.find("a") != name.npos) {
// TODO handle moves to/from %ax // TODO handle moves to/from %ax
} } else if (name.find("CMOV") != name.npos) {
else if (name.find("CMOV") != name.npos) {
MOV("src2", "dst"); MOV("src2", "dst");
} } else if (name.find("PC") != name.npos) {
else if (name.find("PC") != name.npos) {
MOV("label", "reg") MOV("label", "reg")
} } else {
else {
MOV("src", "dst"); MOV("src", "dst");
} }
} }
@ -462,8 +491,7 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
name.find("J") == 0) { name.find("J") == 0) {
if (name.find("FAR") != name.npos && name.find("i") != name.npos) { if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
BRANCH("off"); BRANCH("off");
} } else {
else {
BRANCH("dst"); BRANCH("dst");
} }
} }
@ -471,19 +499,15 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
if (name.find("PUSH") != name.npos) { if (name.find("PUSH") != name.npos) {
if (name.find("FS") != name.npos || if (name.find("FS") != name.npos ||
name.find("GS") != name.npos) { name.find("GS") != name.npos) {
instFlags.addEntry("kInstructionFlagPush"); instType.set("kInstructionTypePush");
// TODO add support for fixed operands // TODO add support for fixed operands
} } else if (name.find("F") != name.npos) {
else if (name.find("F") != name.npos) {
// ignore (this pushes onto the FP stack) // ignore (this pushes onto the FP stack)
} } else if (name[name.length() - 1] == 'm') {
else if (name[name.length() - 1] == 'm') {
PUSH("src"); PUSH("src");
} } else if (name.find("i") != name.npos) {
else if (name.find("i") != name.npos) {
PUSH("imm"); PUSH("imm");
} } else {
else {
PUSH("reg"); PUSH("reg");
} }
} }
@ -491,19 +515,15 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
if (name.find("POP") != name.npos) { if (name.find("POP") != name.npos) {
if (name.find("POPCNT") != name.npos) { if (name.find("POPCNT") != name.npos) {
// ignore (not a real pop) // ignore (not a real pop)
} } else if (name.find("FS") != name.npos ||
else if (name.find("FS") != name.npos ||
name.find("GS") != name.npos) { name.find("GS") != name.npos) {
instFlags.addEntry("kInstructionFlagPop"); instType.set("kInstructionTypePop");
// TODO add support for fixed operands // TODO add support for fixed operands
} } else if (name.find("F") != name.npos) {
else if (name.find("F") != name.npos) {
// ignore (this pops from the FP stack) // ignore (this pops from the FP stack)
} } else if (name[name.length() - 1] == 'm') {
else if (name[name.length() - 1] == 'm') {
POP("dst"); POP("dst");
} } else {
else {
POP("reg"); POP("reg");
} }
} }
@ -511,17 +531,13 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
if (name.find("CALL") != name.npos) { if (name.find("CALL") != name.npos) {
if (name.find("ADJ") != name.npos) { if (name.find("ADJ") != name.npos) {
// ignore (not a call) // ignore (not a call)
} } else if (name.find("SYSCALL") != name.npos) {
else if (name.find("SYSCALL") != name.npos) {
// ignore (doesn't go anywhere we know about) // ignore (doesn't go anywhere we know about)
} } else if (name.find("VMCALL") != name.npos) {
else if (name.find("VMCALL") != name.npos) {
// ignore (rather different semantics than a regular call) // ignore (rather different semantics than a regular call)
} } else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
CALL("off"); CALL("off");
} } else {
else {
CALL("dst"); CALL("dst");
} }
} }
@ -538,9 +554,182 @@ static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
#undef CALL #undef CALL
#undef RETURN #undef RETURN
#undef COND_DECORATE_2 /////////////////////////////////////////////////////
#undef COND_DECORATE_1 // Support functions for handling ARM instructions //
#undef DECORATE1 /////////////////////////////////////////////////////
#define SET(flag) { type->set(flag); return 0; }
#define REG(str) if (name == str) SET("kOperandTypeRegister");
#define IMM(str) if (name == str) SET("kOperandTypeImmediate");
#define MISC(str, type) if (name == str) SET(type);
/// ARMFlagFromOpName - Processes the name of a single ARM operand (which is
/// actually its type) and translates it into an operand type
///
/// @arg type - The type object to set
/// @arg name - The name of the operand
static int ARMFlagFromOpName(LiteralConstantEmitter *type,
const std::string &name) {
REG("GPR");
REG("cc_out");
REG("s_cc_out");
REG("tGPR");
REG("DPR");
REG("SPR");
REG("QPR");
REG("DPR_VFP2");
REG("DPR_8");
IMM("i32imm");
IMM("bf_inv_mask_imm");
IMM("jtblock_operand");
IMM("nohash_imm");
IMM("cpinst_operand");
IMM("cps_opt");
IMM("vfp_f64imm");
IMM("vfp_f32imm");
IMM("msr_mask");
IMM("neg_zero");
IMM("imm0_31");
IMM("h8imm");
IMM("h16imm");
IMM("h32imm");
IMM("h64imm");
IMM("imm0_4095");
IMM("jt2block_operand");
IMM("t_imm_s4");
IMM("pclabel");
MISC("brtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("so_reg", "kOperandTypeARMSoReg"); // R, R, I
MISC("t2_so_reg", "kOperandTypeThumb2SoReg"); // R, I
MISC("so_imm", "kOperandTypeARMSoImm"); // I
MISC("t2_so_imm", "kOperandTypeThumb2SoImm"); // I
MISC("so_imm2part", "kOperandTypeARMSoImm2Part"); // I
MISC("pred", "kOperandTypeARMPredicate"); // I, R
MISC("it_pred", "kOperandTypeARMPredicate"); // I
MISC("addrmode2", "kOperandTypeARMAddrMode2"); // R, R, I
MISC("am2offset", "kOperandTypeARMAddrMode2Offset"); // R, I
MISC("addrmode3", "kOperandTypeARMAddrMode3"); // R, R, I
MISC("am3offset", "kOperandTypeARMAddrMode3Offset"); // R, I
MISC("addrmode4", "kOperandTypeARMAddrMode4"); // R, I
MISC("addrmode5", "kOperandTypeARMAddrMode5"); // R, I
MISC("addrmode6", "kOperandTypeARMAddrMode6"); // R, R, I, I
MISC("am6offset", "kOperandTypeARMAddrMode6Offset"); // R, I, I
MISC("addrmodepc", "kOperandTypeARMAddrModePC"); // R, I
MISC("reglist", "kOperandTypeARMRegisterList"); // I, R, ...
MISC("it_mask", "kOperandTypeThumbITMask"); // I
MISC("t2addrmode_imm8", "kOperandTypeThumb2AddrModeImm8"); // R, I
MISC("t2am_imm8_offset", "kOperandTypeThumb2AddrModeImm8Offset");//I
MISC("t2addrmode_imm12", "kOperandTypeThumb2AddrModeImm12"); // R, I
MISC("t2addrmode_so_reg", "kOperandTypeThumb2AddrModeSoReg"); // R, R, I
MISC("t2addrmode_imm8s4", "kOperandTypeThumb2AddrModeImm8s4"); // R, I
MISC("t2am_imm8s4_offset", "kOperandTypeThumb2AddrModeImm8s4Offset");
// R, I
MISC("tb_addrmode", "kOperandTypeARMTBAddrMode"); // I
MISC("t_addrmode_s1", "kOperandTypeThumbAddrModeS1"); // R, I, R
MISC("t_addrmode_s2", "kOperandTypeThumbAddrModeS2"); // R, I, R
MISC("t_addrmode_s4", "kOperandTypeThumbAddrModeS4"); // R, I, R
MISC("t_addrmode_rr", "kOperandTypeThumbAddrModeRR"); // R, R
MISC("t_addrmode_sp", "kOperandTypeThumbAddrModeSP"); // R, I
return 1;
}
#undef SOREG
#undef SOIMM
#undef PRED
#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR
#undef SET
/// ARMPopulateOperands - Handles all the operands in an ARM instruction, adding
/// the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst - The instruction to use as a source of information
static void ARMPopulateOperands(
LiteralConstantEmitter *(&operandTypes)[MAX_OPERANDS],
const CodeGenInstruction &inst) {
if (!inst.TheDef->isSubClassOf("InstARM") &&
!inst.TheDef->isSubClassOf("InstThumb"))
return;
unsigned int index;
unsigned int numOperands = inst.OperandList.size();
if (numOperands > MAX_OPERANDS) {
fprintf(stderr, "numOperands == %llu > %llu\n",
(uint64_t)numOperands, (uint64_t)MAX_OPERANDS);
llvm_unreachable("Too many operands");
}
for (index = 0; index < numOperands; ++index) {
const CodeGenInstruction::OperandInfo &operandInfo =
inst.OperandList[index];
Record &rec = *operandInfo.Rec;
if (ARMFlagFromOpName(operandTypes[index], rec.getName())) {
errs() << "Operand type: " << rec.getName().c_str() << "\n";
errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
errs() << "Instruction mame: " << inst.TheDef->getName().c_str() << "\n";
llvm_unreachable("Unhandled type");
}
}
}
#define BRANCH(target) { \
instType.set("kInstructionTypeBranch"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
/// ARMExtractSemantics - Performs various checks on the name of an ARM
/// instruction to determine what sort of an instruction it is and then adds
/// the appropriate flags to the instruction and its operands
///
/// @arg instType - A reference to the type for the instruction as a whole
/// @arg operandTypes - A reference to the array of operand type object pointers
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst - A reference to the original instruction
static void ARMExtractSemantics(
LiteralConstantEmitter &instType,
LiteralConstantEmitter *(&operandTypes)[MAX_OPERANDS],
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst) {
const std::string &name = inst.TheDef->getName();
if (name == "tBcc" ||
name == "tB" ||
name == "t2Bcc" ||
name == "Bcc" ||
name == "tCBZ" ||
name == "tCBNZ") {
BRANCH("target");
}
if (name == "tBLr9" ||
name == "BLr9_pred" ||
name == "tBLXi_r9" ||
name == "tBLXr_r9" ||
name == "BLXr9" ||
name == "t2BXJ" ||
name == "BXJ") {
BRANCH("func");
unsigned opIndex;
opIndex = inst.getOperandNamed("func");
if (operandTypes[opIndex]->is("kOperandTypeImmediate"))
operandTypes[opIndex]->set("kOperandTypeARMBranchTarget");
}
}
#undef BRANCH
/// populateInstInfo - Fills an array of InstInfos with information about each /// populateInstInfo - Fills an array of InstInfos with information about each
/// instruction in a target /// instruction in a target
@ -561,19 +750,29 @@ static void populateInstInfo(CompoundConstantEmitter &infoArray,
CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter; CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter;
infoArray.addEntry(infoStruct); infoArray.addEntry(infoStruct);
FlagsConstantEmitter *instFlags = new FlagsConstantEmitter; LiteralConstantEmitter *instType = new LiteralConstantEmitter;
infoStruct->addEntry(instFlags); infoStruct->addEntry(instType);
LiteralConstantEmitter *numOperandsEmitter = LiteralConstantEmitter *numOperandsEmitter =
new LiteralConstantEmitter(inst.OperandList.size()); new LiteralConstantEmitter(inst.OperandList.size());
infoStruct->addEntry(numOperandsEmitter); infoStruct->addEntry(numOperandsEmitter);
CompoundConstantEmitter *operandTypeArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandTypeArray);
LiteralConstantEmitter *operandTypes[MAX_OPERANDS];
CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter; CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandFlagArray); infoStruct->addEntry(operandFlagArray);
FlagsConstantEmitter *operandFlags[MAX_OPERANDS]; FlagsConstantEmitter *operandFlags[MAX_OPERANDS];
for (unsigned operandIndex = 0; operandIndex < MAX_OPERANDS; ++operandIndex) { for (unsigned operandIndex = 0;
operandIndex < MAX_OPERANDS;
++operandIndex) {
operandTypes[operandIndex] = new LiteralConstantEmitter;
operandTypeArray->addEntry(operandTypes[operandIndex]);
operandFlags[operandIndex] = new FlagsConstantEmitter; operandFlags[operandIndex] = new FlagsConstantEmitter;
operandFlagArray->addEntry(operandFlags[operandIndex]); operandFlagArray->addEntry(operandFlags[operandIndex]);
} }
@ -581,29 +780,32 @@ static void populateInstInfo(CompoundConstantEmitter &infoArray,
unsigned numSyntaxes = 0; unsigned numSyntaxes = 0;
if (target.getName() == "X86") { if (target.getName() == "X86") {
X86PopulateOperands(operandFlags, inst); X86PopulateOperands(operandTypes, inst);
X86ExtractSemantics(*instFlags, operandFlags, inst); X86ExtractSemantics(*instType, operandFlags, inst);
numSyntaxes = 2; numSyntaxes = 2;
} }
else if (target.getName() == "ARM") {
ARMPopulateOperands(operandTypes, inst);
ARMExtractSemantics(*instType, operandTypes, operandFlags, inst);
numSyntaxes = 1;
}
CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter; CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandOrderArray); infoStruct->addEntry(operandOrderArray);
for (unsigned syntaxIndex = 0; syntaxIndex < MAX_SYNTAXES; ++syntaxIndex) { for (unsigned syntaxIndex = 0; syntaxIndex < MAX_SYNTAXES; ++syntaxIndex) {
CompoundConstantEmitter *operandOrder = new CompoundConstantEmitter; CompoundConstantEmitter *operandOrder =
new CompoundConstantEmitter(MAX_OPERANDS);
operandOrderArray->addEntry(operandOrder); operandOrderArray->addEntry(operandOrder);
if (syntaxIndex < numSyntaxes) { if (syntaxIndex < numSyntaxes) {
populateOperandOrder(operandOrder, inst, syntaxIndex); populateOperandOrder(operandOrder, inst, syntaxIndex);
} }
else {
for (unsigned operandIndex = 0;
operandIndex < MAX_OPERANDS;
++operandIndex) {
operandOrder->addEntry(new LiteralConstantEmitter("-1"));
}
}
} }
infoStruct = NULL;
} }
} }
@ -634,32 +836,71 @@ void EDEmitter::runHeader(raw_ostream &o) {
unsigned int i = 0; unsigned int i = 0;
EnumEmitter operandTypes("OperandTypes");
operandTypes.addEntry("kOperandTypeNone");
operandTypes.addEntry("kOperandTypeImmediate");
operandTypes.addEntry("kOperandTypeRegister");
operandTypes.addEntry("kOperandTypeX86Memory");
operandTypes.addEntry("kOperandTypeX86EffectiveAddress");
operandTypes.addEntry("kOperandTypeX86PCRelative");
operandTypes.addEntry("kOperandTypeARMBranchTarget");
operandTypes.addEntry("kOperandTypeARMSoReg");
operandTypes.addEntry("kOperandTypeARMSoImm");
operandTypes.addEntry("kOperandTypeARMSoImm2Part");
operandTypes.addEntry("kOperandTypeARMPredicate");
operandTypes.addEntry("kOperandTypeARMAddrMode2");
operandTypes.addEntry("kOperandTypeARMAddrMode2Offset");
operandTypes.addEntry("kOperandTypeARMAddrMode3");
operandTypes.addEntry("kOperandTypeARMAddrMode3Offset");
operandTypes.addEntry("kOperandTypeARMAddrMode4");
operandTypes.addEntry("kOperandTypeARMAddrMode5");
operandTypes.addEntry("kOperandTypeARMAddrMode6");
operandTypes.addEntry("kOperandTypeARMAddrMode6Offset");
operandTypes.addEntry("kOperandTypeARMAddrModePC");
operandTypes.addEntry("kOperandTypeARMRegisterList");
operandTypes.addEntry("kOperandTypeARMTBAddrMode");
operandTypes.addEntry("kOperandTypeThumbITMask");
operandTypes.addEntry("kOperandTypeThumbAddrModeS1");
operandTypes.addEntry("kOperandTypeThumbAddrModeS2");
operandTypes.addEntry("kOperandTypeThumbAddrModeS4");
operandTypes.addEntry("kOperandTypeThumbAddrModeRR");
operandTypes.addEntry("kOperandTypeThumbAddrModeSP");
operandTypes.addEntry("kOperandTypeThumb2SoReg");
operandTypes.addEntry("kOperandTypeThumb2SoImm");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8Offset");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm12");
operandTypes.addEntry("kOperandTypeThumb2AddrModeSoReg");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4Offset");
operandTypes.emit(o, i);
o << "\n";
EnumEmitter operandFlags("OperandFlags"); EnumEmitter operandFlags("OperandFlags");
operandFlags.addEntry("kOperandFlagImmediate");
operandFlags.addEntry("kOperandFlagRegister");
operandFlags.addEntry("kOperandFlagMemory");
operandFlags.addEntry("kOperandFlagEffectiveAddress");
operandFlags.addEntry("kOperandFlagPCRelative");
operandFlags.addEntry("kOperandFlagSource"); operandFlags.addEntry("kOperandFlagSource");
operandFlags.addEntry("kOperandFlagTarget"); operandFlags.addEntry("kOperandFlagTarget");
operandFlags.emitAsFlags(o, i); operandFlags.emitAsFlags(o, i);
o << "\n"; o << "\n";
EnumEmitter instructionFlags("InstructionFlags"); EnumEmitter instructionTypes("InstructionTypes");
instructionFlags.addEntry("kInstructionFlagMove"); instructionTypes.addEntry("kInstructionTypeNone");
instructionFlags.addEntry("kInstructionFlagBranch"); instructionTypes.addEntry("kInstructionTypeMove");
instructionFlags.addEntry("kInstructionFlagPush"); instructionTypes.addEntry("kInstructionTypeBranch");
instructionFlags.addEntry("kInstructionFlagPop"); instructionTypes.addEntry("kInstructionTypePush");
instructionFlags.addEntry("kInstructionFlagCall"); instructionTypes.addEntry("kInstructionTypePop");
instructionFlags.addEntry("kInstructionFlagReturn"); instructionTypes.addEntry("kInstructionTypeCall");
instructionFlags.emitAsFlags(o, i); instructionTypes.addEntry("kInstructionTypeReturn");
instructionTypes.emit(o, i);
o << "\n"; o << "\n";
StructEmitter instInfo("InstInfo"); StructEmitter instInfo("InstInfo");
instInfo.addMember("uint32_t", "instructionFlags"); instInfo.addMember("uint8_t", "instructionType");
instInfo.addMember("uint8_t", "numOperands"); instInfo.addMember("uint8_t", "numOperands");
instInfo.addMember("uint8_t", "operandTypes[MAX_OPERANDS]");
instInfo.addMember("uint8_t", "operandFlags[MAX_OPERANDS]"); instInfo.addMember("uint8_t", "operandFlags[MAX_OPERANDS]");
instInfo.addMember("const char", "operandOrders[MAX_SYNTAXES][MAX_OPERANDS]"); instInfo.addMember("const char", "operandOrders[MAX_SYNTAXES][MAX_OPERANDS]");
instInfo.emit(o, i); instInfo.emit(o, i);