[PM] [cleanup] Run clang-format over this file. If fixes many

inconsistencies that I'll just need to fix myself as I edit things.

llvm-svn: 195784
This commit is contained in:
Chandler Carruth 2013-11-26 20:55:11 +00:00
parent 49862fbae6
commit dfc6dfd004

View File

@ -35,13 +35,13 @@ namespace llvm {
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
/// build up a vector of nodes in a particular SCC. Note that it is a forward
/// iterator and thus you cannot backtrack or re-visit nodes.
template<class GraphT, class GT = GraphTraits<GraphT> >
template <class GraphT, class GT = GraphTraits<GraphT> >
class scc_iterator
: public std::iterator<std::forward_iterator_tag,
std::vector<typename GT::NodeType>, ptrdiff_t> {
typedef typename GT::NodeType NodeType;
: public std::iterator<std::forward_iterator_tag,
std::vector<typename GT::NodeType>, ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef std::vector<NodeType*> SccTy;
typedef std::vector<NodeType *> SccTy;
typedef std::iterator<std::forward_iterator_tag,
std::vector<typename GT::NodeType>, ptrdiff_t> super;
typedef typename super::reference reference;
@ -102,10 +102,11 @@ class scc_iterator
// Compute the next SCC using the DFS traversal.
void GetNextSCC() {
assert(VisitStack.size() == MinVisitNumStack.size());
CurrentSCC.clear(); // Prepare to compute the next SCC
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first));
assert(VisitStack.back().second ==
GT::child_end(VisitStack.back().first));
NodeType *visitingN = VisitStack.back().first;
unsigned minVisitNum = MinVisitNumStack.back();
VisitStack.pop_back();
@ -139,13 +140,17 @@ class scc_iterator
DFSVisitOne(entryN);
GetNextSCC();
}
inline scc_iterator() { /* End is when DFS stack is empty */ }
// End is when the DFS stack is empty.
inline scc_iterator() {}
public:
typedef scc_iterator<GraphT, GT> _Self;
static inline _Self begin(const GraphT &G){return _Self(GT::getEntryNode(G));}
static inline _Self end (const GraphT &) { return _Self(); }
static inline _Self begin(const GraphT &G) {
return _Self(GT::getEntryNode(G));
}
static inline _Self end(const GraphT &) { return _Self(); }
/// \brief Direct loop termination test which is more efficient than
/// comparison with \c end().
@ -154,17 +159,19 @@ public:
return CurrentSCC.empty();
}
inline bool operator==(const _Self& x) const {
inline bool operator==(const _Self &x) const {
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline bool operator!=(const _Self &x) const { return !operator==(x); }
inline _Self& operator++() {
inline _Self &operator++() {
GetNextSCC();
return *this;
}
inline _Self operator++(int) {
_Self tmp = *this; ++*this; return tmp;
_Self tmp = *this;
++*this;
return tmp;
}
inline const SccTy &operator*() const {
@ -182,9 +189,11 @@ public:
/// still contain a loop if the node has an edge back to itself.
bool hasLoop() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
if (CurrentSCC.size() > 1) return true;
if (CurrentSCC.size() > 1)
return true;
NodeType *N = CurrentSCC.front();
for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI)
for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
++CI)
if (*CI == N)
return true;
return false;
@ -199,28 +208,23 @@ public:
}
};
/// \brief Construct the begin iterator for a deduced graph type T.
template <class T>
scc_iterator<T> scc_begin(const T &G) {
template <class T> scc_iterator<T> scc_begin(const T &G) {
return scc_iterator<T>::begin(G);
}
/// \brief Construct the end iterator for a deduced graph type T.
template <class T>
scc_iterator<T> scc_end(const T &G) {
template <class T> scc_iterator<T> scc_end(const T &G) {
return scc_iterator<T>::end(G);
}
/// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
template <class T>
scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::begin(G);
}
/// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
template <class T>
scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
return scc_iterator<Inverse<T> >::end(G);
}