mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-28 06:27:16 +00:00
Moved to lib/Linker
llvm-svn: 17786
This commit is contained in:
parent
8a444d6b09
commit
e51435be09
@ -1,956 +0,0 @@
|
||||
//===- Linker.cpp - Module Linker Implementation --------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the LLVM module linker.
|
||||
//
|
||||
// Specifically, this:
|
||||
// * Merges global variables between the two modules
|
||||
// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
|
||||
// * Merges functions between two modules
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Support/Linker.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/SymbolTable.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#include "llvm/System/Path.h"
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
using namespace llvm;
|
||||
|
||||
// Error - Simple wrapper function to conditionally assign to E and return true.
|
||||
// This just makes error return conditions a little bit simpler...
|
||||
//
|
||||
static inline bool Error(std::string *E, const std::string &Message) {
|
||||
if (E) *E = Message;
|
||||
return true;
|
||||
}
|
||||
|
||||
static std::string ToStr(const Type *Ty, const Module *M) {
|
||||
std::ostringstream OS;
|
||||
WriteTypeSymbolic(OS, Ty, M);
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
//
|
||||
// Function: ResolveTypes()
|
||||
//
|
||||
// Description:
|
||||
// Attempt to link the two specified types together.
|
||||
//
|
||||
// Inputs:
|
||||
// DestTy - The type to which we wish to resolve.
|
||||
// SrcTy - The original type which we want to resolve.
|
||||
// Name - The name of the type.
|
||||
//
|
||||
// Outputs:
|
||||
// DestST - The symbol table in which the new type should be placed.
|
||||
//
|
||||
// Return value:
|
||||
// true - There is an error and the types cannot yet be linked.
|
||||
// false - No errors.
|
||||
//
|
||||
static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
|
||||
SymbolTable *DestST, const std::string &Name) {
|
||||
if (DestTy == SrcTy) return false; // If already equal, noop
|
||||
|
||||
// Does the type already exist in the module?
|
||||
if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists...
|
||||
if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
|
||||
const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
|
||||
} else {
|
||||
return true; // Cannot link types... neither is opaque and not-equal
|
||||
}
|
||||
} else { // Type not in dest module. Add it now.
|
||||
if (DestTy) // Type _is_ in module, just opaque...
|
||||
const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
|
||||
->refineAbstractTypeTo(SrcTy);
|
||||
else if (!Name.empty())
|
||||
DestST->insert(Name, const_cast<Type*>(SrcTy));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static const FunctionType *getFT(const PATypeHolder &TH) {
|
||||
return cast<FunctionType>(TH.get());
|
||||
}
|
||||
static const StructType *getST(const PATypeHolder &TH) {
|
||||
return cast<StructType>(TH.get());
|
||||
}
|
||||
|
||||
// RecursiveResolveTypes - This is just like ResolveTypes, except that it
|
||||
// recurses down into derived types, merging the used types if the parent types
|
||||
// are compatible.
|
||||
//
|
||||
static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
|
||||
const PATypeHolder &SrcTy,
|
||||
SymbolTable *DestST, const std::string &Name,
|
||||
std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
|
||||
const Type *SrcTyT = SrcTy.get();
|
||||
const Type *DestTyT = DestTy.get();
|
||||
if (DestTyT == SrcTyT) return false; // If already equal, noop
|
||||
|
||||
// If we found our opaque type, resolve it now!
|
||||
if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
|
||||
return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
|
||||
|
||||
// Two types cannot be resolved together if they are of different primitive
|
||||
// type. For example, we cannot resolve an int to a float.
|
||||
if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
|
||||
|
||||
// Otherwise, resolve the used type used by this derived type...
|
||||
switch (DestTyT->getTypeID()) {
|
||||
case Type::FunctionTyID: {
|
||||
if (cast<FunctionType>(DestTyT)->isVarArg() !=
|
||||
cast<FunctionType>(SrcTyT)->isVarArg() ||
|
||||
cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
|
||||
cast<FunctionType>(SrcTyT)->getNumContainedTypes())
|
||||
return true;
|
||||
for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
|
||||
if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
|
||||
getFT(SrcTy)->getContainedType(i), DestST, "",
|
||||
Pointers))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
case Type::StructTyID: {
|
||||
if (getST(DestTy)->getNumContainedTypes() !=
|
||||
getST(SrcTy)->getNumContainedTypes()) return 1;
|
||||
for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
|
||||
if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
|
||||
getST(SrcTy)->getContainedType(i), DestST, "",
|
||||
Pointers))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
case Type::ArrayTyID: {
|
||||
const ArrayType *DAT = cast<ArrayType>(DestTy.get());
|
||||
const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
|
||||
if (DAT->getNumElements() != SAT->getNumElements()) return true;
|
||||
return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
|
||||
DestST, "", Pointers);
|
||||
}
|
||||
case Type::PointerTyID: {
|
||||
// If this is a pointer type, check to see if we have already seen it. If
|
||||
// so, we are in a recursive branch. Cut off the search now. We cannot use
|
||||
// an associative container for this search, because the type pointers (keys
|
||||
// in the container) change whenever types get resolved...
|
||||
//
|
||||
for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
|
||||
if (Pointers[i].first == DestTy)
|
||||
return Pointers[i].second != SrcTy;
|
||||
|
||||
// Otherwise, add the current pointers to the vector to stop recursion on
|
||||
// this pair.
|
||||
Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
|
||||
bool Result =
|
||||
RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
|
||||
cast<PointerType>(SrcTy.get())->getElementType(),
|
||||
DestST, "", Pointers);
|
||||
Pointers.pop_back();
|
||||
return Result;
|
||||
}
|
||||
default: assert(0 && "Unexpected type!"); return true;
|
||||
}
|
||||
}
|
||||
|
||||
static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
|
||||
const PATypeHolder &SrcTy,
|
||||
SymbolTable *DestST, const std::string &Name){
|
||||
std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
|
||||
return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
|
||||
}
|
||||
|
||||
|
||||
// LinkTypes - Go through the symbol table of the Src module and see if any
|
||||
// types are named in the src module that are not named in the Dst module.
|
||||
// Make sure there are no type name conflicts.
|
||||
//
|
||||
static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
|
||||
SymbolTable *DestST = &Dest->getSymbolTable();
|
||||
const SymbolTable *SrcST = &Src->getSymbolTable();
|
||||
|
||||
// Look for a type plane for Type's...
|
||||
SymbolTable::type_const_iterator TI = SrcST->type_begin();
|
||||
SymbolTable::type_const_iterator TE = SrcST->type_end();
|
||||
if (TI == TE) return false; // No named types, do nothing.
|
||||
|
||||
// Some types cannot be resolved immediately because they depend on other
|
||||
// types being resolved to each other first. This contains a list of types we
|
||||
// are waiting to recheck.
|
||||
std::vector<std::string> DelayedTypesToResolve;
|
||||
|
||||
for ( ; TI != TE; ++TI ) {
|
||||
const std::string &Name = TI->first;
|
||||
const Type *RHS = TI->second;
|
||||
|
||||
// Check to see if this type name is already in the dest module...
|
||||
Type *Entry = DestST->lookupType(Name);
|
||||
|
||||
if (ResolveTypes(Entry, RHS, DestST, Name)) {
|
||||
// They look different, save the types 'till later to resolve.
|
||||
DelayedTypesToResolve.push_back(Name);
|
||||
}
|
||||
}
|
||||
|
||||
// Iteratively resolve types while we can...
|
||||
while (!DelayedTypesToResolve.empty()) {
|
||||
// Loop over all of the types, attempting to resolve them if possible...
|
||||
unsigned OldSize = DelayedTypesToResolve.size();
|
||||
|
||||
// Try direct resolution by name...
|
||||
for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
|
||||
const std::string &Name = DelayedTypesToResolve[i];
|
||||
Type *T1 = SrcST->lookupType(Name);
|
||||
Type *T2 = DestST->lookupType(Name);
|
||||
if (!ResolveTypes(T2, T1, DestST, Name)) {
|
||||
// We are making progress!
|
||||
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
|
||||
// Did we not eliminate any types?
|
||||
if (DelayedTypesToResolve.size() == OldSize) {
|
||||
// Attempt to resolve subelements of types. This allows us to merge these
|
||||
// two types: { int* } and { opaque* }
|
||||
for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
|
||||
const std::string &Name = DelayedTypesToResolve[i];
|
||||
PATypeHolder T1(SrcST->lookupType(Name));
|
||||
PATypeHolder T2(DestST->lookupType(Name));
|
||||
|
||||
if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
|
||||
// We are making progress!
|
||||
DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
|
||||
|
||||
// Go back to the main loop, perhaps we can resolve directly by name
|
||||
// now...
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we STILL cannot resolve the types, then there is something wrong.
|
||||
// Report the warning and delete one of the names.
|
||||
if (DelayedTypesToResolve.size() == OldSize) {
|
||||
const std::string &Name = DelayedTypesToResolve.back();
|
||||
|
||||
const Type *T1 = SrcST->lookupType(Name);
|
||||
const Type *T2 = DestST->lookupType(Name);
|
||||
std::cerr << "WARNING: Type conflict between types named '" << Name
|
||||
<< "'.\n Src='";
|
||||
WriteTypeSymbolic(std::cerr, T1, Src);
|
||||
std::cerr << "'.\n Dest='";
|
||||
WriteTypeSymbolic(std::cerr, T2, Dest);
|
||||
std::cerr << "'\n";
|
||||
|
||||
// Remove the symbol name from the destination.
|
||||
DelayedTypesToResolve.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void PrintMap(const std::map<const Value*, Value*> &M) {
|
||||
for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
|
||||
I != E; ++I) {
|
||||
std::cerr << " Fr: " << (void*)I->first << " ";
|
||||
I->first->dump();
|
||||
std::cerr << " To: " << (void*)I->second << " ";
|
||||
I->second->dump();
|
||||
std::cerr << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// RemapOperand - Use LocalMap and GlobalMap to convert references from one
|
||||
// module to another. This is somewhat sophisticated in that it can
|
||||
// automatically handle constant references correctly as well...
|
||||
//
|
||||
static Value *RemapOperand(const Value *In,
|
||||
std::map<const Value*, Value*> &LocalMap,
|
||||
std::map<const Value*, Value*> *GlobalMap) {
|
||||
std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
|
||||
if (I != LocalMap.end()) return I->second;
|
||||
|
||||
if (GlobalMap) {
|
||||
I = GlobalMap->find(In);
|
||||
if (I != GlobalMap->end()) return I->second;
|
||||
}
|
||||
|
||||
// Check to see if it's a constant that we are interesting in transforming...
|
||||
if (const Constant *CPV = dyn_cast<Constant>(In)) {
|
||||
if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
|
||||
isa<ConstantAggregateZero>(CPV))
|
||||
return const_cast<Constant*>(CPV); // Simple constants stay identical...
|
||||
|
||||
Constant *Result = 0;
|
||||
|
||||
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
|
||||
std::vector<Constant*> Operands(CPA->getNumOperands());
|
||||
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
||||
Operands[i] =
|
||||
cast<Constant>(RemapOperand(CPA->getOperand(i), LocalMap, GlobalMap));
|
||||
Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
|
||||
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
|
||||
std::vector<Constant*> Operands(CPS->getNumOperands());
|
||||
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
||||
Operands[i] =
|
||||
cast<Constant>(RemapOperand(CPS->getOperand(i), LocalMap, GlobalMap));
|
||||
Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
|
||||
} else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
|
||||
Result = const_cast<Constant*>(CPV);
|
||||
} else if (isa<GlobalValue>(CPV)) {
|
||||
Result = cast<Constant>(RemapOperand(CPV, LocalMap, GlobalMap));
|
||||
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
||||
Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
||||
std::vector<Constant*> Indices;
|
||||
Indices.reserve(CE->getNumOperands()-1);
|
||||
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
||||
Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
|
||||
LocalMap, GlobalMap)));
|
||||
|
||||
Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
|
||||
} else if (CE->getNumOperands() == 1) {
|
||||
// Cast instruction
|
||||
assert(CE->getOpcode() == Instruction::Cast);
|
||||
Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
||||
Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
|
||||
} else if (CE->getNumOperands() == 3) {
|
||||
// Select instruction
|
||||
assert(CE->getOpcode() == Instruction::Select);
|
||||
Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
||||
Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
|
||||
Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
|
||||
Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
|
||||
cast<Constant>(V3));
|
||||
} else if (CE->getNumOperands() == 2) {
|
||||
// Binary operator...
|
||||
Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
|
||||
Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
|
||||
|
||||
Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
|
||||
cast<Constant>(V2));
|
||||
} else {
|
||||
assert(0 && "Unknown constant expr type!");
|
||||
}
|
||||
|
||||
} else {
|
||||
assert(0 && "Unknown type of derived type constant value!");
|
||||
}
|
||||
|
||||
// Cache the mapping in our local map structure...
|
||||
if (GlobalMap)
|
||||
GlobalMap->insert(std::make_pair(In, Result));
|
||||
else
|
||||
LocalMap.insert(std::make_pair(In, Result));
|
||||
return Result;
|
||||
}
|
||||
|
||||
std::cerr << "XXX LocalMap: \n";
|
||||
PrintMap(LocalMap);
|
||||
|
||||
if (GlobalMap) {
|
||||
std::cerr << "XXX GlobalMap: \n";
|
||||
PrintMap(*GlobalMap);
|
||||
}
|
||||
|
||||
std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
|
||||
assert(0 && "Couldn't remap value!");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
|
||||
/// in the symbol table. This is good for all clients except for us. Go
|
||||
/// through the trouble to force this back.
|
||||
static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
|
||||
assert(GV->getName() != Name && "Can't force rename to self");
|
||||
SymbolTable &ST = GV->getParent()->getSymbolTable();
|
||||
|
||||
// If there is a conflict, rename the conflict.
|
||||
Value *ConflictVal = ST.lookup(GV->getType(), Name);
|
||||
assert(ConflictVal&&"Why do we have to force rename if there is no conflic?");
|
||||
GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal);
|
||||
assert(ConflictGV->hasInternalLinkage() &&
|
||||
"Not conflicting with a static global, should link instead!");
|
||||
|
||||
ConflictGV->setName(""); // Eliminate the conflict
|
||||
GV->setName(Name); // Force the name back
|
||||
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
|
||||
assert(GV->getName() == Name && ConflictGV->getName() != Name &&
|
||||
"ForceRenaming didn't work");
|
||||
}
|
||||
|
||||
|
||||
// LinkGlobals - Loop through the global variables in the src module and merge
|
||||
// them into the dest module.
|
||||
//
|
||||
static bool LinkGlobals(Module *Dest, const Module *Src,
|
||||
std::map<const Value*, Value*> &ValueMap,
|
||||
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
||||
std::map<std::string, GlobalValue*> &GlobalsByName,
|
||||
std::string *Err) {
|
||||
// We will need a module level symbol table if the src module has a module
|
||||
// level symbol table...
|
||||
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
||||
|
||||
// Loop over all of the globals in the src module, mapping them over as we go
|
||||
//
|
||||
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
||||
const GlobalVariable *SGV = I;
|
||||
GlobalVariable *DGV = 0;
|
||||
// Check to see if may have to link the global.
|
||||
if (SGV->hasName() && !SGV->hasInternalLinkage())
|
||||
if (!(DGV = Dest->getGlobalVariable(SGV->getName(),
|
||||
SGV->getType()->getElementType()))) {
|
||||
std::map<std::string, GlobalValue*>::iterator EGV =
|
||||
GlobalsByName.find(SGV->getName());
|
||||
if (EGV != GlobalsByName.end())
|
||||
DGV = dyn_cast<GlobalVariable>(EGV->second);
|
||||
if (DGV && RecursiveResolveTypes(SGV->getType(), DGV->getType(), ST, ""))
|
||||
DGV = 0; // FIXME: gross.
|
||||
}
|
||||
|
||||
assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
|
||||
"Global must either be external or have an initializer!");
|
||||
|
||||
bool SGExtern = SGV->isExternal();
|
||||
bool DGExtern = DGV ? DGV->isExternal() : false;
|
||||
|
||||
if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
|
||||
// No linking to be performed, simply create an identical version of the
|
||||
// symbol over in the dest module... the initializer will be filled in
|
||||
// later by LinkGlobalInits...
|
||||
//
|
||||
GlobalVariable *NewDGV =
|
||||
new GlobalVariable(SGV->getType()->getElementType(),
|
||||
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
||||
SGV->getName(), Dest);
|
||||
|
||||
// If the LLVM runtime renamed the global, but it is an externally visible
|
||||
// symbol, DGV must be an existing global with internal linkage. Rename
|
||||
// it.
|
||||
if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage())
|
||||
ForceRenaming(NewDGV, SGV->getName());
|
||||
|
||||
// Make sure to remember this mapping...
|
||||
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
||||
if (SGV->hasAppendingLinkage())
|
||||
// Keep track that this is an appending variable...
|
||||
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
||||
|
||||
} else if (SGV->isExternal()) {
|
||||
// If SGV is external or if both SGV & DGV are external.. Just link the
|
||||
// external globals, we aren't adding anything.
|
||||
ValueMap.insert(std::make_pair(SGV, DGV));
|
||||
|
||||
// Inherit 'const' information.
|
||||
if (SGV->isConstant()) DGV->setConstant(true);
|
||||
|
||||
} else if (DGV->isExternal()) { // If DGV is external but SGV is not...
|
||||
ValueMap.insert(std::make_pair(SGV, DGV));
|
||||
DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
|
||||
|
||||
if (DGV->isConstant() && !SGV->isConstant())
|
||||
return Error(Err, "Linking globals named '" + SGV->getName() +
|
||||
"': declaration is const but definition is not!");
|
||||
|
||||
// Inherit 'const' information.
|
||||
if (SGV->isConstant()) DGV->setConstant(true);
|
||||
|
||||
} else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
|
||||
// At this point we know that DGV has LinkOnce, Appending, Weak, or
|
||||
// External linkage. If DGV is Appending, this is an error.
|
||||
if (DGV->hasAppendingLinkage())
|
||||
return Error(Err, "Linking globals named '" + SGV->getName() +
|
||||
"' with 'weak' and 'appending' linkage is not allowed!");
|
||||
|
||||
if (SGV->isConstant() != DGV->isConstant())
|
||||
return Error(Err, "Global Variable Collision on '" +
|
||||
ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
|
||||
"' - Global variables differ in const'ness");
|
||||
|
||||
// Otherwise, just perform the link.
|
||||
ValueMap.insert(std::make_pair(SGV, DGV));
|
||||
|
||||
// Linkonce+Weak = Weak
|
||||
if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
|
||||
DGV->setLinkage(SGV->getLinkage());
|
||||
|
||||
} else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
|
||||
// At this point we know that SGV has LinkOnce, Appending, or External
|
||||
// linkage. If SGV is Appending, this is an error.
|
||||
if (SGV->hasAppendingLinkage())
|
||||
return Error(Err, "Linking globals named '" + SGV->getName() +
|
||||
" ' with 'weak' and 'appending' linkage is not allowed!");
|
||||
|
||||
if (SGV->isConstant() != DGV->isConstant())
|
||||
return Error(Err, "Global Variable Collision on '" +
|
||||
ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
|
||||
"' - Global variables differ in const'ness");
|
||||
|
||||
if (!SGV->hasLinkOnceLinkage())
|
||||
DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
|
||||
ValueMap.insert(std::make_pair(SGV, DGV));
|
||||
|
||||
} else if (SGV->getLinkage() != DGV->getLinkage()) {
|
||||
return Error(Err, "Global variables named '" + SGV->getName() +
|
||||
"' have different linkage specifiers!");
|
||||
// Inherit 'const' information.
|
||||
if (SGV->isConstant()) DGV->setConstant(true);
|
||||
|
||||
} else if (SGV->hasExternalLinkage()) {
|
||||
// Allow linking two exactly identical external global variables...
|
||||
if (SGV->isConstant() != DGV->isConstant())
|
||||
return Error(Err, "Global Variable Collision on '" +
|
||||
ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
|
||||
"' - Global variables differ in const'ness");
|
||||
|
||||
if (SGV->getInitializer() != DGV->getInitializer())
|
||||
return Error(Err, "Global Variable Collision on '" +
|
||||
ToStr(SGV->getType(), Src) + " %" + SGV->getName() +
|
||||
"' - External linkage globals have different initializers");
|
||||
|
||||
ValueMap.insert(std::make_pair(SGV, DGV));
|
||||
} else if (SGV->hasAppendingLinkage()) {
|
||||
// No linking is performed yet. Just insert a new copy of the global, and
|
||||
// keep track of the fact that it is an appending variable in the
|
||||
// AppendingVars map. The name is cleared out so that no linkage is
|
||||
// performed.
|
||||
GlobalVariable *NewDGV =
|
||||
new GlobalVariable(SGV->getType()->getElementType(),
|
||||
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
||||
"", Dest);
|
||||
|
||||
// Make sure to remember this mapping...
|
||||
ValueMap.insert(std::make_pair(SGV, NewDGV));
|
||||
|
||||
// Keep track that this is an appending variable...
|
||||
AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
|
||||
} else {
|
||||
assert(0 && "Unknown linkage!");
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// LinkGlobalInits - Update the initializers in the Dest module now that all
|
||||
// globals that may be referenced are in Dest.
|
||||
//
|
||||
static bool LinkGlobalInits(Module *Dest, const Module *Src,
|
||||
std::map<const Value*, Value*> &ValueMap,
|
||||
std::string *Err) {
|
||||
|
||||
// Loop over all of the globals in the src module, mapping them over as we go
|
||||
//
|
||||
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
||||
const GlobalVariable *SGV = I;
|
||||
|
||||
if (SGV->hasInitializer()) { // Only process initialized GV's
|
||||
// Figure out what the initializer looks like in the dest module...
|
||||
Constant *SInit =
|
||||
cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
|
||||
|
||||
GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
|
||||
if (DGV->hasInitializer()) {
|
||||
if (SGV->hasExternalLinkage()) {
|
||||
if (DGV->getInitializer() != SInit)
|
||||
return Error(Err, "Global Variable Collision on '" +
|
||||
ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+
|
||||
" - Global variables have different initializers");
|
||||
} else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
|
||||
// Nothing is required, mapped values will take the new global
|
||||
// automatically.
|
||||
} else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
|
||||
// Nothing is required, mapped values will take the new global
|
||||
// automatically.
|
||||
} else if (DGV->hasAppendingLinkage()) {
|
||||
assert(0 && "Appending linkage unimplemented!");
|
||||
} else {
|
||||
assert(0 && "Unknown linkage!");
|
||||
}
|
||||
} else {
|
||||
// Copy the initializer over now...
|
||||
DGV->setInitializer(SInit);
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// LinkFunctionProtos - Link the functions together between the two modules,
|
||||
// without doing function bodies... this just adds external function prototypes
|
||||
// to the Dest function...
|
||||
//
|
||||
static bool LinkFunctionProtos(Module *Dest, const Module *Src,
|
||||
std::map<const Value*, Value*> &ValueMap,
|
||||
std::map<std::string, GlobalValue*> &GlobalsByName,
|
||||
std::string *Err) {
|
||||
SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
|
||||
|
||||
// Loop over all of the functions in the src module, mapping them over as we
|
||||
// go
|
||||
//
|
||||
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
||||
const Function *SF = I; // SrcFunction
|
||||
Function *DF = 0;
|
||||
if (SF->hasName() && !SF->hasInternalLinkage()) {
|
||||
// Check to see if may have to link the function.
|
||||
if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) {
|
||||
std::map<std::string, GlobalValue*>::iterator EF =
|
||||
GlobalsByName.find(SF->getName());
|
||||
if (EF != GlobalsByName.end())
|
||||
DF = dyn_cast<Function>(EF->second);
|
||||
if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, ""))
|
||||
DF = 0; // FIXME: gross.
|
||||
}
|
||||
}
|
||||
|
||||
if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
|
||||
// Function does not already exist, simply insert an function signature
|
||||
// identical to SF into the dest module...
|
||||
Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
|
||||
SF->getName(), Dest);
|
||||
|
||||
// If the LLVM runtime renamed the function, but it is an externally
|
||||
// visible symbol, DF must be an existing function with internal linkage.
|
||||
// Rename it.
|
||||
if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage())
|
||||
ForceRenaming(NewDF, SF->getName());
|
||||
|
||||
// ... and remember this mapping...
|
||||
ValueMap.insert(std::make_pair(SF, NewDF));
|
||||
} else if (SF->isExternal()) {
|
||||
// If SF is external or if both SF & DF are external.. Just link the
|
||||
// external functions, we aren't adding anything.
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
} else if (DF->isExternal()) { // If DF is external but SF is not...
|
||||
// Link the external functions, update linkage qualifiers
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
DF->setLinkage(SF->getLinkage());
|
||||
|
||||
} else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
|
||||
// At this point we know that DF has LinkOnce, Weak, or External linkage.
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
|
||||
// Linkonce+Weak = Weak
|
||||
if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
|
||||
DF->setLinkage(SF->getLinkage());
|
||||
|
||||
} else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
|
||||
// At this point we know that SF has LinkOnce or External linkage.
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage
|
||||
DF->setLinkage(SF->getLinkage());
|
||||
|
||||
} else if (SF->getLinkage() != DF->getLinkage()) {
|
||||
return Error(Err, "Functions named '" + SF->getName() +
|
||||
"' have different linkage specifiers!");
|
||||
} else if (SF->hasExternalLinkage()) {
|
||||
// The function is defined in both modules!!
|
||||
return Error(Err, "Function '" +
|
||||
ToStr(SF->getFunctionType(), Src) + "':\"" +
|
||||
SF->getName() + "\" - Function is already defined!");
|
||||
} else {
|
||||
assert(0 && "Unknown linkage configuration found!");
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// LinkFunctionBody - Copy the source function over into the dest function and
|
||||
// fix up references to values. At this point we know that Dest is an external
|
||||
// function, and that Src is not.
|
||||
//
|
||||
static bool LinkFunctionBody(Function *Dest, const Function *Src,
|
||||
std::map<const Value*, Value*> &GlobalMap,
|
||||
std::string *Err) {
|
||||
assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
|
||||
std::map<const Value*, Value*> LocalMap; // Map for function local values
|
||||
|
||||
// Go through and convert function arguments over...
|
||||
Function::aiterator DI = Dest->abegin();
|
||||
for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
|
||||
I != E; ++I, ++DI) {
|
||||
DI->setName(I->getName()); // Copy the name information over...
|
||||
|
||||
// Add a mapping to our local map
|
||||
LocalMap.insert(std::make_pair(I, DI));
|
||||
}
|
||||
|
||||
// Loop over all of the basic blocks, copying the instructions over...
|
||||
//
|
||||
for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
||||
// Create new basic block and add to mapping and the Dest function...
|
||||
BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
|
||||
LocalMap.insert(std::make_pair(I, DBB));
|
||||
|
||||
// Loop over all of the instructions in the src basic block, copying them
|
||||
// over. Note that this is broken in a strict sense because the cloned
|
||||
// instructions will still be referencing values in the Src module, not
|
||||
// the remapped values. In our case, however, we will not get caught and
|
||||
// so we can delay patching the values up until later...
|
||||
//
|
||||
for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
|
||||
II != IE; ++II) {
|
||||
Instruction *DI = II->clone();
|
||||
DI->setName(II->getName());
|
||||
DBB->getInstList().push_back(DI);
|
||||
LocalMap.insert(std::make_pair(II, DI));
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, all of the instructions and values of the function are now
|
||||
// copied over. The only problem is that they are still referencing values in
|
||||
// the Source function as operands. Loop through all of the operands of the
|
||||
// functions and patch them up to point to the local versions...
|
||||
//
|
||||
for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
||||
OI != OE; ++OI)
|
||||
*OI = RemapOperand(*OI, LocalMap, &GlobalMap);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// LinkFunctionBodies - Link in the function bodies that are defined in the
|
||||
// source module into the DestModule. This consists basically of copying the
|
||||
// function over and fixing up references to values.
|
||||
//
|
||||
static bool LinkFunctionBodies(Module *Dest, const Module *Src,
|
||||
std::map<const Value*, Value*> &ValueMap,
|
||||
std::string *Err) {
|
||||
|
||||
// Loop over all of the functions in the src module, mapping them over as we
|
||||
// go
|
||||
//
|
||||
for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
|
||||
if (!SF->isExternal()) { // No body if function is external
|
||||
Function *DF = cast<Function>(ValueMap[SF]); // Destination function
|
||||
|
||||
// DF not external SF external?
|
||||
if (DF->isExternal()) {
|
||||
// Only provide the function body if there isn't one already.
|
||||
if (LinkFunctionBody(DF, SF, ValueMap, Err))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// LinkAppendingVars - If there were any appending global variables, link them
|
||||
// together now. Return true on error.
|
||||
//
|
||||
static bool LinkAppendingVars(Module *M,
|
||||
std::multimap<std::string, GlobalVariable *> &AppendingVars,
|
||||
std::string *ErrorMsg) {
|
||||
if (AppendingVars.empty()) return false; // Nothing to do.
|
||||
|
||||
// Loop over the multimap of appending vars, processing any variables with the
|
||||
// same name, forming a new appending global variable with both of the
|
||||
// initializers merged together, then rewrite references to the old variables
|
||||
// and delete them.
|
||||
//
|
||||
std::vector<Constant*> Inits;
|
||||
while (AppendingVars.size() > 1) {
|
||||
// Get the first two elements in the map...
|
||||
std::multimap<std::string,
|
||||
GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
|
||||
|
||||
// If the first two elements are for different names, there is no pair...
|
||||
// Otherwise there is a pair, so link them together...
|
||||
if (First->first == Second->first) {
|
||||
GlobalVariable *G1 = First->second, *G2 = Second->second;
|
||||
const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
|
||||
const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
|
||||
|
||||
// Check to see that they two arrays agree on type...
|
||||
if (T1->getElementType() != T2->getElementType())
|
||||
return Error(ErrorMsg,
|
||||
"Appending variables with different element types need to be linked!");
|
||||
if (G1->isConstant() != G2->isConstant())
|
||||
return Error(ErrorMsg,
|
||||
"Appending variables linked with different const'ness!");
|
||||
|
||||
unsigned NewSize = T1->getNumElements() + T2->getNumElements();
|
||||
ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
|
||||
|
||||
// Create the new global variable...
|
||||
GlobalVariable *NG =
|
||||
new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
|
||||
/*init*/0, First->first, M);
|
||||
|
||||
// Merge the initializer...
|
||||
Inits.reserve(NewSize);
|
||||
if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
|
||||
for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
|
||||
Inits.push_back(I->getOperand(i));
|
||||
} else {
|
||||
assert(isa<ConstantAggregateZero>(G1->getInitializer()));
|
||||
Constant *CV = Constant::getNullValue(T1->getElementType());
|
||||
for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
|
||||
Inits.push_back(CV);
|
||||
}
|
||||
if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
|
||||
for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
|
||||
Inits.push_back(I->getOperand(i));
|
||||
} else {
|
||||
assert(isa<ConstantAggregateZero>(G2->getInitializer()));
|
||||
Constant *CV = Constant::getNullValue(T2->getElementType());
|
||||
for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
|
||||
Inits.push_back(CV);
|
||||
}
|
||||
NG->setInitializer(ConstantArray::get(NewType, Inits));
|
||||
Inits.clear();
|
||||
|
||||
// Replace any uses of the two global variables with uses of the new
|
||||
// global...
|
||||
|
||||
// FIXME: This should rewrite simple/straight-forward uses such as
|
||||
// getelementptr instructions to not use the Cast!
|
||||
G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType()));
|
||||
G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType()));
|
||||
|
||||
// Remove the two globals from the module now...
|
||||
M->getGlobalList().erase(G1);
|
||||
M->getGlobalList().erase(G2);
|
||||
|
||||
// Put the new global into the AppendingVars map so that we can handle
|
||||
// linking of more than two vars...
|
||||
Second->second = NG;
|
||||
}
|
||||
AppendingVars.erase(First);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// LinkModules - This function links two modules together, with the resulting
|
||||
// left module modified to be the composite of the two input modules. If an
|
||||
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
|
||||
// the problem. Upon failure, the Dest module could be in a modified state, and
|
||||
// shouldn't be relied on to be consistent.
|
||||
//
|
||||
bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
|
||||
assert(Dest != 0 && "Invalid Destination module");
|
||||
assert(Src != 0 && "Invalid Source Module");
|
||||
|
||||
if (Dest->getEndianness() == Module::AnyEndianness)
|
||||
Dest->setEndianness(Src->getEndianness());
|
||||
if (Dest->getPointerSize() == Module::AnyPointerSize)
|
||||
Dest->setPointerSize(Src->getPointerSize());
|
||||
|
||||
if (Src->getEndianness() != Module::AnyEndianness &&
|
||||
Dest->getEndianness() != Src->getEndianness())
|
||||
std::cerr << "WARNING: Linking two modules of different endianness!\n";
|
||||
if (Src->getPointerSize() != Module::AnyPointerSize &&
|
||||
Dest->getPointerSize() != Src->getPointerSize())
|
||||
std::cerr << "WARNING: Linking two modules of different pointer size!\n";
|
||||
|
||||
// Update the destination module's dependent libraries list with the libraries
|
||||
// from the source module. There's no opportunity for duplicates here as the
|
||||
// Module ensures that duplicate insertions are discarded.
|
||||
Module::lib_iterator SI = Src->lib_begin();
|
||||
Module::lib_iterator SE = Src->lib_end();
|
||||
while ( SI != SE ) {
|
||||
Dest->addLibrary(*SI);
|
||||
++SI;
|
||||
}
|
||||
|
||||
// LinkTypes - Go through the symbol table of the Src module and see if any
|
||||
// types are named in the src module that are not named in the Dst module.
|
||||
// Make sure there are no type name conflicts.
|
||||
//
|
||||
if (LinkTypes(Dest, Src, ErrorMsg)) return true;
|
||||
|
||||
// ValueMap - Mapping of values from what they used to be in Src, to what they
|
||||
// are now in Dest.
|
||||
//
|
||||
std::map<const Value*, Value*> ValueMap;
|
||||
|
||||
// AppendingVars - Keep track of global variables in the destination module
|
||||
// with appending linkage. After the module is linked together, they are
|
||||
// appended and the module is rewritten.
|
||||
//
|
||||
std::multimap<std::string, GlobalVariable *> AppendingVars;
|
||||
|
||||
// GlobalsByName - The LLVM SymbolTable class fights our best efforts at
|
||||
// linking by separating globals by type. Until PR411 is fixed, we replicate
|
||||
// it's functionality here.
|
||||
std::map<std::string, GlobalValue*> GlobalsByName;
|
||||
|
||||
for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) {
|
||||
// Add all of the appending globals already in the Dest module to
|
||||
// AppendingVars.
|
||||
if (I->hasAppendingLinkage())
|
||||
AppendingVars.insert(std::make_pair(I->getName(), I));
|
||||
|
||||
// Keep track of all globals by name.
|
||||
if (!I->hasInternalLinkage() && I->hasName())
|
||||
GlobalsByName[I->getName()] = I;
|
||||
}
|
||||
|
||||
// Keep track of all globals by name.
|
||||
for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I)
|
||||
if (!I->hasInternalLinkage() && I->hasName())
|
||||
GlobalsByName[I->getName()] = I;
|
||||
|
||||
// Insert all of the globals in src into the Dest module... without linking
|
||||
// initializers (which could refer to functions not yet mapped over).
|
||||
//
|
||||
if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg))
|
||||
return true;
|
||||
|
||||
// Link the functions together between the two modules, without doing function
|
||||
// bodies... this just adds external function prototypes to the Dest
|
||||
// function... We do this so that when we begin processing function bodies,
|
||||
// all of the global values that may be referenced are available in our
|
||||
// ValueMap.
|
||||
//
|
||||
if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg))
|
||||
return true;
|
||||
|
||||
// Update the initializers in the Dest module now that all globals that may
|
||||
// be referenced are in Dest.
|
||||
//
|
||||
if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
|
||||
|
||||
// Link in the function bodies that are defined in the source module into the
|
||||
// DestModule. This consists basically of copying the function over and
|
||||
// fixing up references to values.
|
||||
//
|
||||
if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
|
||||
|
||||
// If there were any appending global variables, link them together now.
|
||||
//
|
||||
if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
|
||||
|
||||
// If the source library's module id is in the dependent library list of the
|
||||
// destination library, remove it since that module is now linked in.
|
||||
sys::Path modId;
|
||||
modId.setFile(Src->getModuleIdentifier());
|
||||
if (!modId.isEmpty())
|
||||
Dest->removeLibrary(modId.getBasename());
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// vim: sw=2
|
@ -1,422 +0,0 @@
|
||||
//===- Linker.cpp - Link together LLVM objects and libraries --------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains routines to handle linking together LLVM bytecode files,
|
||||
// and to handle annoying things like static libraries.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "gccld.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/PassManager.h"
|
||||
#include "llvm/Bytecode/Reader.h"
|
||||
#include "llvm/Bytecode/WriteBytecodePass.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Transforms/IPO.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Support/Linker.h"
|
||||
#include "llvm/Config/config.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/FileUtilities.h"
|
||||
#include "llvm/System/Signals.h"
|
||||
#include "llvm/Support/SystemUtils.h"
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
using namespace llvm;
|
||||
|
||||
/// FindLib - Try to convert Filename into the name of a file that we can open,
|
||||
/// if it does not already name a file we can open, by first trying to open
|
||||
/// Filename, then libFilename.[suffix] for each of a set of several common
|
||||
/// library suffixes, in each of the directories in Paths and the directory
|
||||
/// named by the value of the environment variable LLVM_LIB_SEARCH_PATH. Returns
|
||||
/// an empty string if no matching file can be found.
|
||||
///
|
||||
std::string llvm::FindLib(const std::string &Filename,
|
||||
const std::vector<std::string> &Paths,
|
||||
bool SharedObjectOnly) {
|
||||
// Determine if the pathname can be found as it stands.
|
||||
if (FileOpenable(Filename))
|
||||
return Filename;
|
||||
|
||||
// If that doesn't work, convert the name into a library name.
|
||||
std::string LibName = "lib" + Filename;
|
||||
|
||||
// Iterate over the directories in Paths to see if we can find the library
|
||||
// there.
|
||||
for (unsigned Index = 0; Index != Paths.size(); ++Index) {
|
||||
std::string Directory = Paths[Index] + "/";
|
||||
|
||||
if (!SharedObjectOnly && FileOpenable(Directory + LibName + ".bc"))
|
||||
return Directory + LibName + ".bc";
|
||||
|
||||
if (FileOpenable(Directory + LibName + SHLIBEXT))
|
||||
return Directory + LibName + SHLIBEXT;
|
||||
|
||||
if (!SharedObjectOnly && FileOpenable(Directory + LibName + ".a"))
|
||||
return Directory + LibName + ".a";
|
||||
}
|
||||
|
||||
// One last hope: Check LLVM_LIB_SEARCH_PATH.
|
||||
char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH");
|
||||
if (SearchPath == NULL)
|
||||
return std::string();
|
||||
|
||||
LibName = std::string(SearchPath) + "/" + LibName;
|
||||
if (FileOpenable(LibName))
|
||||
return LibName;
|
||||
|
||||
return std::string();
|
||||
}
|
||||
|
||||
/// GetAllDefinedSymbols - Modifies its parameter DefinedSymbols to contain the
|
||||
/// name of each externally-visible symbol defined in M.
|
||||
///
|
||||
void llvm::GetAllDefinedSymbols(Module *M,
|
||||
std::set<std::string> &DefinedSymbols) {
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
|
||||
DefinedSymbols.insert(I->getName());
|
||||
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
||||
if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
|
||||
DefinedSymbols.insert(I->getName());
|
||||
}
|
||||
|
||||
/// GetAllUndefinedSymbols - calculates the set of undefined symbols that still
|
||||
/// exist in an LLVM module. This is a bit tricky because there may be two
|
||||
/// symbols with the same name but different LLVM types that will be resolved to
|
||||
/// each other but aren't currently (thus we need to treat it as resolved).
|
||||
///
|
||||
/// Inputs:
|
||||
/// M - The module in which to find undefined symbols.
|
||||
///
|
||||
/// Outputs:
|
||||
/// UndefinedSymbols - A set of C++ strings containing the name of all
|
||||
/// undefined symbols.
|
||||
///
|
||||
void
|
||||
llvm::GetAllUndefinedSymbols(Module *M,
|
||||
std::set<std::string> &UndefinedSymbols) {
|
||||
std::set<std::string> DefinedSymbols;
|
||||
UndefinedSymbols.clear(); // Start out empty
|
||||
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (I->hasName()) {
|
||||
if (I->isExternal())
|
||||
UndefinedSymbols.insert(I->getName());
|
||||
else if (!I->hasInternalLinkage())
|
||||
DefinedSymbols.insert(I->getName());
|
||||
}
|
||||
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
||||
if (I->hasName()) {
|
||||
if (I->isExternal())
|
||||
UndefinedSymbols.insert(I->getName());
|
||||
else if (!I->hasInternalLinkage())
|
||||
DefinedSymbols.insert(I->getName());
|
||||
}
|
||||
|
||||
// Prune out any defined symbols from the undefined symbols set...
|
||||
for (std::set<std::string>::iterator I = UndefinedSymbols.begin();
|
||||
I != UndefinedSymbols.end(); )
|
||||
if (DefinedSymbols.count(*I))
|
||||
UndefinedSymbols.erase(I++); // This symbol really is defined!
|
||||
else
|
||||
++I; // Keep this symbol in the undefined symbols list
|
||||
}
|
||||
|
||||
|
||||
/// LoadObject - Read in and parse the bytecode file named by FN and return the
|
||||
/// module it contains (wrapped in an auto_ptr), or 0 and set ErrorMessage if an
|
||||
/// error occurs.
|
||||
///
|
||||
std::auto_ptr<Module> llvm::LoadObject(const std::string &FN,
|
||||
std::string &ErrorMessage) {
|
||||
std::string ParserErrorMessage;
|
||||
Module *Result = ParseBytecodeFile(FN, &ParserErrorMessage);
|
||||
if (Result) return std::auto_ptr<Module>(Result);
|
||||
ErrorMessage = "Bytecode file '" + FN + "' could not be loaded";
|
||||
if (ParserErrorMessage.size()) ErrorMessage += ": " + ParserErrorMessage;
|
||||
return std::auto_ptr<Module>();
|
||||
}
|
||||
|
||||
/// LinkInArchive - opens an archive library and link in all objects which
|
||||
/// provide symbols that are currently undefined.
|
||||
///
|
||||
/// Inputs:
|
||||
/// M - The module in which to link the archives.
|
||||
/// Filename - The pathname of the archive.
|
||||
/// Verbose - Flags whether verbose messages should be printed.
|
||||
///
|
||||
/// Outputs:
|
||||
/// ErrorMessage - A C++ string detailing what error occurred, if any.
|
||||
///
|
||||
/// Return Value:
|
||||
/// TRUE - An error occurred.
|
||||
/// FALSE - No errors.
|
||||
///
|
||||
static bool LinkInArchive(Module *M,
|
||||
const std::string &Filename,
|
||||
std::string &ErrorMessage,
|
||||
bool Verbose)
|
||||
{
|
||||
// Find all of the symbols currently undefined in the bytecode program.
|
||||
// If all the symbols are defined, the program is complete, and there is
|
||||
// no reason to link in any archive files.
|
||||
std::set<std::string> UndefinedSymbols;
|
||||
GetAllUndefinedSymbols(M, UndefinedSymbols);
|
||||
if (UndefinedSymbols.empty()) {
|
||||
if (Verbose) std::cerr << " No symbols undefined, don't link library!\n";
|
||||
return false; // No need to link anything in!
|
||||
}
|
||||
|
||||
// Load in the archive objects.
|
||||
if (Verbose) std::cerr << " Loading archive file '" << Filename << "'\n";
|
||||
std::vector<Module*> Objects;
|
||||
if (ReadArchiveFile(Filename, Objects, &ErrorMessage))
|
||||
return true;
|
||||
|
||||
// Figure out which symbols are defined by all of the modules in the archive.
|
||||
std::vector<std::set<std::string> > DefinedSymbols;
|
||||
DefinedSymbols.resize(Objects.size());
|
||||
for (unsigned i = 0; i != Objects.size(); ++i) {
|
||||
GetAllDefinedSymbols(Objects[i], DefinedSymbols[i]);
|
||||
}
|
||||
|
||||
// While we are linking in object files, loop.
|
||||
bool Linked = true;
|
||||
while (Linked) {
|
||||
Linked = false;
|
||||
|
||||
for (unsigned i = 0; i != Objects.size(); ++i) {
|
||||
// Consider whether we need to link in this module... we only need to
|
||||
// link it in if it defines some symbol which is so far undefined.
|
||||
//
|
||||
const std::set<std::string> &DefSymbols = DefinedSymbols[i];
|
||||
|
||||
bool ObjectRequired = false;
|
||||
|
||||
//
|
||||
// If the object defines main() and the program currently has main()
|
||||
// undefined, then automatically link in the module. Otherwise, look to
|
||||
// see if it defines a symbol that is currently undefined.
|
||||
//
|
||||
if ((M->getMainFunction() == NULL) &&
|
||||
((DefSymbols.find ("main")) != DefSymbols.end())) {
|
||||
ObjectRequired = true;
|
||||
} else {
|
||||
for (std::set<std::string>::iterator I = UndefinedSymbols.begin(),
|
||||
E = UndefinedSymbols.end(); I != E; ++I)
|
||||
if (DefSymbols.count(*I)) {
|
||||
if (Verbose)
|
||||
std::cerr << " Found object '"
|
||||
<< Objects[i]->getModuleIdentifier ()
|
||||
<< "' providing symbol '" << *I << "'...\n";
|
||||
ObjectRequired = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// We DO need to link this object into the program...
|
||||
if (ObjectRequired) {
|
||||
if (LinkModules(M, Objects[i], &ErrorMessage))
|
||||
return true; // Couldn't link in the right object file...
|
||||
|
||||
// Since we have linked in this object, delete it from the list of
|
||||
// objects to consider in this archive file.
|
||||
std::swap(Objects[i], Objects.back());
|
||||
std::swap(DefinedSymbols[i], DefinedSymbols.back());
|
||||
Objects.pop_back();
|
||||
DefinedSymbols.pop_back();
|
||||
--i; // Do not skip an entry
|
||||
|
||||
// The undefined symbols set should have shrunk.
|
||||
GetAllUndefinedSymbols(M, UndefinedSymbols);
|
||||
Linked = true; // We have linked something in!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// LinkInFile - opens a bytecode file and links in all objects which
|
||||
/// provide symbols that are currently undefined.
|
||||
///
|
||||
/// Inputs:
|
||||
/// HeadModule - The module in which to link the bytecode file.
|
||||
/// Filename - The pathname of the bytecode file.
|
||||
/// Verbose - Flags whether verbose messages should be printed.
|
||||
///
|
||||
/// Outputs:
|
||||
/// ErrorMessage - A C++ string detailing what error occurred, if any.
|
||||
///
|
||||
/// Return Value:
|
||||
/// TRUE - An error occurred.
|
||||
/// FALSE - No errors.
|
||||
///
|
||||
static bool LinkInFile(Module *HeadModule,
|
||||
const std::string &Filename,
|
||||
std::string &ErrorMessage,
|
||||
bool Verbose)
|
||||
{
|
||||
std::auto_ptr<Module> M(LoadObject(Filename, ErrorMessage));
|
||||
if (M.get() == 0) return true;
|
||||
bool Result = LinkModules(HeadModule, M.get(), &ErrorMessage);
|
||||
if (Verbose) std::cerr << "Linked in bytecode file '" << Filename << "'\n";
|
||||
return Result;
|
||||
}
|
||||
|
||||
/// LinkFiles - takes a module and a list of files and links them all together.
|
||||
/// It locates the file either in the current directory, as its absolute
|
||||
/// or relative pathname, or as a file somewhere in LLVM_LIB_SEARCH_PATH.
|
||||
///
|
||||
/// Inputs:
|
||||
/// progname - The name of the program (infamous argv[0]).
|
||||
/// HeadModule - The module under which all files will be linked.
|
||||
/// Files - A vector of C++ strings indicating the LLVM bytecode filenames
|
||||
/// to be linked. The names can refer to a mixture of pure LLVM
|
||||
/// bytecode files and archive (ar) formatted files.
|
||||
/// Verbose - Flags whether verbose output should be printed while linking.
|
||||
///
|
||||
/// Outputs:
|
||||
/// HeadModule - The module will have the specified LLVM bytecode files linked
|
||||
/// in.
|
||||
///
|
||||
/// Return value:
|
||||
/// FALSE - No errors.
|
||||
/// TRUE - Some error occurred.
|
||||
///
|
||||
bool llvm::LinkFiles(const char *progname, Module *HeadModule,
|
||||
const std::vector<std::string> &Files, bool Verbose) {
|
||||
// String in which to receive error messages.
|
||||
std::string ErrorMessage;
|
||||
|
||||
// Full pathname of the file
|
||||
std::string Pathname;
|
||||
|
||||
// Get the library search path from the environment
|
||||
char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH");
|
||||
|
||||
for (unsigned i = 0; i < Files.size(); ++i) {
|
||||
// Determine where this file lives.
|
||||
if (FileOpenable(Files[i])) {
|
||||
Pathname = Files[i];
|
||||
} else {
|
||||
if (SearchPath == NULL) {
|
||||
std::cerr << progname << ": Cannot find linker input file '"
|
||||
<< Files[i] << "'\n";
|
||||
std::cerr << progname
|
||||
<< ": Warning: Your LLVM_LIB_SEARCH_PATH is unset.\n";
|
||||
return true;
|
||||
}
|
||||
|
||||
Pathname = std::string(SearchPath)+"/"+Files[i];
|
||||
if (!FileOpenable(Pathname)) {
|
||||
std::cerr << progname << ": Cannot find linker input file '"
|
||||
<< Files[i] << "'\n";
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// A user may specify an ar archive without -l, perhaps because it
|
||||
// is not installed as a library. Detect that and link the library.
|
||||
if (IsArchive(Pathname)) {
|
||||
if (Verbose)
|
||||
std::cerr << "Trying to link archive '" << Pathname << "'\n";
|
||||
|
||||
if (LinkInArchive(HeadModule, Pathname, ErrorMessage, Verbose)) {
|
||||
std::cerr << progname << ": Error linking in archive '" << Pathname
|
||||
<< "': " << ErrorMessage << "\n";
|
||||
return true;
|
||||
}
|
||||
} else if (IsBytecode(Pathname)) {
|
||||
if (Verbose)
|
||||
std::cerr << "Trying to link bytecode file '" << Pathname << "'\n";
|
||||
|
||||
if (LinkInFile(HeadModule, Pathname, ErrorMessage, Verbose)) {
|
||||
std::cerr << progname << ": Error linking in bytecode file '"
|
||||
<< Pathname << "': " << ErrorMessage << "\n";
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
std::cerr << progname << ": Warning: invalid file `" << Pathname
|
||||
<< "' ignored.\n";
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// LinkLibraries - takes the specified library files and links them into the
|
||||
/// main bytecode object file.
|
||||
///
|
||||
/// Inputs:
|
||||
/// progname - The name of the program (infamous argv[0]).
|
||||
/// HeadModule - The module into which all necessary libraries will be linked.
|
||||
/// Libraries - The list of libraries to link into the module.
|
||||
/// LibPaths - The list of library paths in which to find libraries.
|
||||
/// Verbose - Flags whether verbose messages should be printed.
|
||||
/// Native - Flags whether native code is being generated.
|
||||
///
|
||||
/// Outputs:
|
||||
/// HeadModule - The module will have all necessary libraries linked in.
|
||||
///
|
||||
/// Return value:
|
||||
/// FALSE - No error.
|
||||
/// TRUE - Error.
|
||||
///
|
||||
void llvm::LinkLibraries(const char *progname, Module *HeadModule,
|
||||
const std::vector<std::string> &Libraries,
|
||||
const std::vector<std::string> &LibPaths,
|
||||
bool Verbose, bool Native) {
|
||||
// String in which to receive error messages.
|
||||
std::string ErrorMessage;
|
||||
|
||||
for (unsigned i = 0; i < Libraries.size(); ++i) {
|
||||
// Determine where this library lives.
|
||||
std::string Pathname = FindLib(Libraries[i], LibPaths);
|
||||
if (Pathname.empty()) {
|
||||
// If the pathname does not exist, then continue to the next one if
|
||||
// we're doing a native link and give an error if we're doing a bytecode
|
||||
// link.
|
||||
if (!Native) {
|
||||
std::cerr << progname << ": WARNING: Cannot find library -l"
|
||||
<< Libraries[i] << "\n";
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// A user may specify an ar archive without -l, perhaps because it
|
||||
// is not installed as a library. Detect that and link the library.
|
||||
if (IsArchive(Pathname)) {
|
||||
if (Verbose)
|
||||
std::cerr << "Trying to link archive '" << Pathname << "' (-l"
|
||||
<< Libraries[i] << ")\n";
|
||||
|
||||
if (LinkInArchive(HeadModule, Pathname, ErrorMessage, Verbose)) {
|
||||
std::cerr << progname << ": " << ErrorMessage
|
||||
<< ": Error linking in archive '" << Pathname << "' (-l"
|
||||
<< Libraries[i] << ")\n";
|
||||
exit(1);
|
||||
}
|
||||
} else if (IsBytecode(Pathname)) {
|
||||
if (Verbose)
|
||||
std::cerr << "Trying to link bytecode file '" << Pathname
|
||||
<< "' (-l" << Libraries[i] << ")\n";
|
||||
|
||||
if (LinkInFile(HeadModule, Pathname, ErrorMessage, Verbose)) {
|
||||
std::cerr << progname << ": " << ErrorMessage
|
||||
<< ": error linking in bytecode file '" << Pathname << "' (-l"
|
||||
<< Libraries[i] << ")\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user