X86 Peephole: fold loads to the source register operand if possible.

Machine CSE and other optimizations can remove instructions so folding
is possible at peephole while not possible at ISel.

rdar://10554090 and rdar://11873276

llvm-svn: 160919
This commit is contained in:
Manman Ren 2012-07-28 16:48:01 +00:00
parent 3c15b4afd4
commit ea77f9076b
10 changed files with 167 additions and 50 deletions

View File

@ -14,6 +14,7 @@
#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineFunction.h"
@ -693,6 +694,16 @@ public:
return false;
}
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if and only if the
/// def and use are in the same BB.
virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
SmallSet<unsigned, 4> &FoldAsLoadDefRegs,
MachineInstr *&DefMI) const {
return 0;
}
/// FoldImmediate - 'Reg' is known to be defined by a move immediate
/// instruction, try to fold the immediate into the use instruction.
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,

View File

@ -78,6 +78,7 @@ STATISTIC(NumReuse, "Number of extension results reused");
STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate folded");
STATISTIC(NumLoadFold, "Number of loads folded");
namespace {
class PeepholeOptimizer : public MachineFunctionPass {
@ -441,6 +442,7 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
SmallPtrSet<MachineInstr*, 8> LocalMIs;
SmallSet<unsigned, 4> ImmDefRegs;
DenseMap<unsigned, MachineInstr*> ImmDefMIs;
SmallSet<unsigned, 4> FoldAsLoadDefRegs;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
@ -448,6 +450,7 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
LocalMIs.clear();
ImmDefRegs.clear();
ImmDefMIs.clear();
FoldAsLoadDefRegs.clear();
bool First = true;
MachineBasicBlock::iterator PMII;
@ -489,6 +492,25 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
}
MachineInstr *DefMI = 0;
MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, FoldAsLoadDefRegs,
DefMI);
if (FoldMI) {
// Update LocalMIs since we replaced MI with FoldMI and deleted DefMI.
LocalMIs.erase(MI);
LocalMIs.erase(DefMI);
LocalMIs.insert(FoldMI);
MI->eraseFromParent();
DefMI->eraseFromParent();
++NumLoadFold;
// MI is replaced with FoldMI.
Changed = true;
PMII = FoldMI;
MII = llvm::next(PMII);
continue;
}
First = false;
PMII = MII;
++MII;

View File

@ -3323,6 +3323,75 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
return true;
}
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if and only if the
/// def and use are in the same BB.
MachineInstr* X86InstrInfo::
optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
SmallSet<unsigned, 4> &FoldAsLoadDefRegs,
MachineInstr *&DefMI) const {
if (MI->mayStore() || MI->isCall())
// To be conservative, we don't fold the loads if there is a store in
// between.
FoldAsLoadDefRegs.clear();
// We only fold loads to a virtual register.
if (MI->canFoldAsLoad()) {
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.getNumDefs() == 1) {
unsigned Reg = MI->getOperand(0).getReg();
// To reduce compilation time, we check MRI->hasOneUse when inserting
// loads. It should be checked when processing uses of the load, since
// uses can be removed during peephole.
if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI->hasOneUse(Reg)) {
FoldAsLoadDefRegs.insert(Reg);
return 0;
}
}
}
// Collect information about virtual register operands of MI.
DenseMap<unsigned, unsigned> SrcVirtualRegToOp;
SmallSet<unsigned, 4> DstVirtualRegs;
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (MO.isDef())
DstVirtualRegs.insert(Reg);
else if (FoldAsLoadDefRegs.count(Reg)) {
// Only handle the case where Reg is used in a single src operand.
if (SrcVirtualRegToOp.find(Reg) != SrcVirtualRegToOp.end())
SrcVirtualRegToOp.erase(Reg);
else
SrcVirtualRegToOp.insert(std::make_pair(Reg, i));
}
}
for (DenseMap<unsigned, unsigned>::iterator SI = SrcVirtualRegToOp.begin(),
SE = SrcVirtualRegToOp.end(); SI != SE; SI++) {
// If the virtual register is updated by MI, we can't fold the load.
if (DstVirtualRegs.count(SI->first)) continue;
// Check whether we can fold the def into this operand.
DefMI = MRI->getVRegDef(SI->first);
assert(DefMI);
bool SawStore = false;
if (!DefMI->isSafeToMove(this, 0, SawStore))
continue;
SmallVector<unsigned, 8> Ops;
Ops.push_back(SI->second);
MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
if (!FoldMI) continue;
FoldAsLoadDefRegs.erase(SI->first);
return FoldMI;
}
return 0;
}
/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined. This is
/// used for mapping:

View File

@ -387,6 +387,14 @@ public:
unsigned SrcReg2, int CmpMask, int CmpValue,
const MachineRegisterInfo *MRI) const;
/// optimizeLoadInstr - Try to remove the load by folding it to a register
/// operand at the use. We fold the load instructions if and only if the
/// def and use are in the same BB.
virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
SmallSet<unsigned, 4> &FoldAsLoadDefRegs,
MachineInstr *&DefMI) const;
private:
MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
MachineFunction::iterator &MFI,

View File

@ -3,8 +3,7 @@
define void @double_save(<4 x i32>* %Ap, <4 x i32>* %Bp, <8 x i32>* %P) nounwind ssp {
entry:
; CHECK: vmovaps
; CHECK: vmovaps
; CHECK: vinsertf128
; CHECK: vinsertf128 $1, ([[A0:%rdi|%rsi]]),
; CHECK: vmovups
%A = load <4 x i32>* %Ap
%B = load <4 x i32>* %Bp

View File

@ -34,8 +34,7 @@ entry:
define double @squirt(double* %x) nounwind {
entry:
; CHECK: squirt:
; CHECK: movsd ([[A0]]), %xmm0
; CHECK: sqrtsd %xmm0, %xmm0
; CHECK: sqrtsd ([[A0]]), %xmm0
%z = load double* %x
%t = call double @llvm.sqrt.f64(double %z)
ret double %t

View File

@ -45,3 +45,29 @@ L:
}
; rdar://10554090
; xor in exit block will be CSE'ed and load will be folded to xor in entry.
define i1 @test3(i32* %P, i32* %Q) nounwind {
; CHECK: test3:
; CHECK: movl 8(%esp), %eax
; CHECK: xorl (%eax),
; CHECK: j
; CHECK-NOT: xor
entry:
%0 = load i32* %P, align 4
%1 = load i32* %Q, align 4
%2 = xor i32 %0, %1
%3 = and i32 %2, 65535
%4 = icmp eq i32 %3, 0
br i1 %4, label %exit, label %land.end
exit:
%shr.i.i19 = xor i32 %1, %0
%5 = and i32 %shr.i.i19, 2147418112
%6 = icmp eq i32 %5, 0
br label %land.end
land.end:
%7 = phi i1 [ %6, %exit ], [ false, %entry ]
ret i1 %7
}

View File

@ -1,11 +1,14 @@
; RUN: llc < %s -march=x86 -mattr=+sse2 > %t
; RUN: grep pcmpeqd %t | count 1
; RUN: grep xor %t | count 1
; RUN: not grep LCP %t
; RUN: llc < %s -march=x86 -mattr=+sse2 | FileCheck %s
define <2 x double> @foo() nounwind {
ret <2 x double> bitcast (<2 x i64><i64 -1, i64 -1> to <2 x double>)
; CHECK: foo:
; CHECK: pcmpeqd %xmm{{[0-9]+}}, %xmm{{[0-9]+}}
; CHECK-NEXT: ret
}
define <2 x double> @bar() nounwind {
ret <2 x double> bitcast (<2 x i64><i64 0, i64 0> to <2 x double>)
; CHECK: bar:
; CHECK: xorps %xmm{{[0-9]+}}, %xmm{{[0-9]+}}
; CHECK-NEXT: ret
}

View File

@ -137,16 +137,13 @@ define double @ole_inverse(double %x, double %y) nounwind {
}
; CHECK: ogt_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; CHECK-NEXT: maxsd %xmm1, %xmm0
; CHECK-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: ret
; UNSAFE: ogt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: ogt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @ogt_x(double %x) nounwind {
%c = fcmp ogt double %x, 0.000000e+00
@ -155,16 +152,13 @@ define double @ogt_x(double %x) nounwind {
}
; CHECK: olt_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; CHECK-NEXT: minsd %xmm1, %xmm0
; CHECK-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: ret
; UNSAFE: olt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: olt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @olt_x(double %x) nounwind {
%c = fcmp olt double %x, 0.000000e+00
@ -217,12 +211,10 @@ define double @olt_inverse_x(double %x) nounwind {
; CHECK: oge_x:
; CHECK: ucomisd %xmm1, %xmm0
; UNSAFE: oge_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: oge_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @oge_x(double %x) nounwind {
%c = fcmp oge double %x, 0.000000e+00
@ -233,12 +225,10 @@ define double @oge_x(double %x) nounwind {
; CHECK: ole_x:
; CHECK: ucomisd %xmm0, %xmm1
; UNSAFE: ole_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: ole_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @ole_x(double %x) nounwind {
%c = fcmp ole double %x, 0.000000e+00
@ -411,12 +401,10 @@ define double @ule_inverse(double %x, double %y) nounwind {
; CHECK: ugt_x:
; CHECK: ucomisd %xmm0, %xmm1
; UNSAFE: ugt_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: ugt_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @ugt_x(double %x) nounwind {
%c = fcmp ugt double %x, 0.000000e+00
@ -427,12 +415,10 @@ define double @ugt_x(double %x) nounwind {
; CHECK: ult_x:
; CHECK: ucomisd %xmm1, %xmm0
; UNSAFE: ult_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: ult_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @ult_x(double %x) nounwind {
%c = fcmp ult double %x, 0.000000e+00
@ -482,12 +468,10 @@ define double @ult_inverse_x(double %x) nounwind {
; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0
; CHECK-NEXT: ret
; UNSAFE: uge_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: maxsd %xmm1, %xmm0
; UNSAFE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: uge_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: maxsd %xmm1, %xmm0
; FINITE-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @uge_x(double %x) nounwind {
%c = fcmp uge double %x, 0.000000e+00
@ -501,12 +485,10 @@ define double @uge_x(double %x) nounwind {
; CHECK-NEXT: movap{{[sd]}} %xmm1, %xmm0
; CHECK-NEXT: ret
; UNSAFE: ule_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; UNSAFE-NEXT: minsd %xmm1, %xmm0
; UNSAFE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; UNSAFE-NEXT: ret
; FINITE: ule_x:
; FINITE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; FINITE-NEXT: minsd %xmm1, %xmm0
; FINITE-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; FINITE-NEXT: ret
define double @ule_x(double %x) nounwind {
%c = fcmp ule double %x, 0.000000e+00
@ -515,8 +497,7 @@ define double @ule_x(double %x) nounwind {
}
; CHECK: uge_inverse_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; CHECK-NEXT: minsd %xmm1, %xmm0
; CHECK-NEXT: minsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: ret
; UNSAFE: uge_inverse_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1
@ -535,8 +516,7 @@ define double @uge_inverse_x(double %x) nounwind {
}
; CHECK: ule_inverse_x:
; CHECK-NEXT: xorp{{[sd]}} %xmm1, %xmm1
; CHECK-NEXT: maxsd %xmm1, %xmm0
; CHECK-NEXT: maxsd LCP{{.*}}(%rip), %xmm0
; CHECK-NEXT: ret
; UNSAFE: ule_inverse_x:
; UNSAFE-NEXT: xorp{{[sd]}} %xmm1, %xmm1

View File

@ -14,8 +14,8 @@ define <4 x i32> @test1(<4 x i32> %A, <4 x i32> %B) nounwind {
define <4 x i32> @test2(<4 x i32> %A, <4 x i32> %B) nounwind {
; CHECK: test2:
; CHECK: pcmp
; CHECK: pcmp
; CHECK: pxor
; CHECK: pxor LCP
; CHECK: movdqa
; CHECK: ret
%C = icmp sge <4 x i32> %A, %B
%D = sext <4 x i1> %C to <4 x i32>