128-bit sign extension and vector shift cleanups, contributed by Ken Werner

(IBM).

llvm-svn: 79949
This commit is contained in:
Scott Michel 2009-08-24 22:28:53 +00:00
parent 01d74b3fed
commit ee51c50e21
5 changed files with 124 additions and 15 deletions

View File

@ -322,6 +322,9 @@ namespace {
/// target-specific node if it hasn't already been changed.
SDNode *Select(SDValue Op);
//! Emit the instruction sequence for i128 sext
SDNode *SelectSEXTi128(SDValue &Op, EVT OpVT);
//! Emit the instruction sequence for i64 shl
SDNode *SelectSHLi64(SDValue &Op, EVT OpVT);
@ -833,6 +836,10 @@ SPUDAGToDAGISel::Select(SDValue Op) {
}
}
}
} else if (Opc == ISD::SIGN_EXTEND) {
if (OpVT == MVT::i128) {
return SelectSEXTi128(Op, OpVT);
}
} else if (Opc == ISD::SHL) {
if (OpVT == MVT::i64) {
return SelectSHLi64(Op, OpVT);
@ -956,6 +963,58 @@ SPUDAGToDAGISel::Select(SDValue Op) {
return SelectCode(Op);
}
/*!
* Emit the instruction sequence for i64 -> i128 sign extend. The basic
* algorithm is to duplicate the sign bit using rotmai to generate at
* least one byte full of sign bits. Then propagate the "sign-byte" into
* theleftmost words and the i64 into the rightmost words using shufb.
*
* @param Op The sext operand
* @param OpVT The type to extend to
* @return The SDNode with the entire instruction sequence
*/
SDNode *
SPUDAGToDAGISel::SelectSEXTi128(SDValue &Op, EVT OpVT)
{
DebugLoc dl = Op.getDebugLoc();
// Type to extend from
SDValue Op0 = Op.getOperand(0);
EVT Op0VT = Op0.getValueType();
assert((OpVT == MVT::i128 && Op0VT == MVT::i64) &&
"LowerSIGN_EXTEND: input and/or output operand have wrong size");
// Create shuffle mask
unsigned mask1 = 0x10101010; // byte 0 - 3 and 4 - 7
unsigned mask2 = 0x01020304; // byte 8 - 11
unsigned mask3 = 0x05060708; // byte 12 - 15
SDValue shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
CurDAG->getConstant(mask1, MVT::i32),
CurDAG->getConstant(mask1, MVT::i32),
CurDAG->getConstant(mask2, MVT::i32),
CurDAG->getConstant(mask3, MVT::i32));
SDNode *shufMaskLoad = emitBuildVector(shufMask);
// Word wise arithmetic right shift to generate at least one byte
// that contains sign bits.
SDNode *PromoteScalar = SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl,
MVT::v2i64, Op0, Op0));
SDNode *sraVal = SelectCode(CurDAG->getNode(ISD::SRA, dl, MVT::v2i64,
SDValue(PromoteScalar, 0),
CurDAG->getConstant(31, MVT::i32)));
// Shuffle bytes - Copy the sign bits into the upper 64 bits
// and the input value into the lower 64 bits.
SDNode *extShuffle = SelectCode(CurDAG->getNode(SPUISD::SHUFB, dl,
MVT::v2i64, Op0,
SDValue(sraVal, 0),
SDValue(shufMaskLoad, 0)));
return SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, MVT::i128,
SDValue(extShuffle, 0)));
}
/*!
* Emit the instruction sequence for i64 left shifts. The basic algorithm
* is to fill the bottom two word slots with zeros so that zeros are shifted

View File

@ -350,6 +350,9 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
// Custom lower i128 -> i64 truncates
setOperationAction(ISD::TRUNCATE, MVT::i64, Custom);
// Custom lower i64 -> i128 sign extend
setOperationAction(ISD::SIGN_EXTEND, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
@ -511,9 +514,6 @@ SPUTargetLowering::getTargetNodeName(unsigned Opcode) const
node_names[(unsigned) SPUISD::VEC2PREFSLOT] = "SPUISD::VEC2PREFSLOT";
node_names[(unsigned) SPUISD::SHLQUAD_L_BITS] = "SPUISD::SHLQUAD_L_BITS";
node_names[(unsigned) SPUISD::SHLQUAD_L_BYTES] = "SPUISD::SHLQUAD_L_BYTES";
node_names[(unsigned) SPUISD::VEC_SHL] = "SPUISD::VEC_SHL";
node_names[(unsigned) SPUISD::VEC_SRL] = "SPUISD::VEC_SRL";
node_names[(unsigned) SPUISD::VEC_SRA] = "SPUISD::VEC_SRA";
node_names[(unsigned) SPUISD::VEC_ROTL] = "SPUISD::VEC_ROTL";
node_names[(unsigned) SPUISD::VEC_ROTR] = "SPUISD::VEC_ROTR";
node_names[(unsigned) SPUISD::ROTBYTES_LEFT] = "SPUISD::ROTBYTES_LEFT";
@ -2610,6 +2610,45 @@ static SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG)
return SDValue(); // Leave the truncate unmolested
}
//! Custom lower ISD::SIGN_EXTEND
static SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG)
{
// Type to extend to
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// Type to extend from
SDValue Op0 = Op.getOperand(0);
EVT Op0VT = Op0.getValueType();
assert((VT == MVT::i128 && Op0VT == MVT::i64) &&
"LowerSIGN_EXTEND: input and/or output operand have wrong size");
// Create shuffle mask
unsigned mask1 = 0x10101010; // byte 0 - 3 and 4 - 7
unsigned mask2 = 0x01020304; // byte 8 - 11
unsigned mask3 = 0x05060708; // byte 12 - 15
SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
DAG.getConstant(mask1, MVT::i32),
DAG.getConstant(mask1, MVT::i32),
DAG.getConstant(mask2, MVT::i32),
DAG.getConstant(mask3, MVT::i32));
// Word wise arithmetic right shift to generate a byte that contains sign bits
SDValue sraVal = DAG.getNode(ISD::SRA,
dl,
MVT::v2i64,
DAG.getNode(SPUISD::PREFSLOT2VEC, dl, MVT::v2i64, Op0, Op0),
DAG.getConstant(31, MVT::i32));
// shuffle bytes - copies the sign bits into the upper 64 bits
// and the input value into the lower 64 bits
SDValue extShuffle = DAG.getNode(SPUISD::SHUFB, dl, MVT::v2i64,
Op0, sraVal, shufMask);
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i128, extShuffle);
}
//! Custom (target-specific) lowering entry point
/*!
This is where LLVM's DAG selection process calls to do target-specific
@ -2702,6 +2741,9 @@ SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
case ISD::TRUNCATE:
return LowerTRUNCATE(Op, DAG);
case ISD::SIGN_EXTEND:
return LowerSIGN_EXTEND(Op, DAG);
}
return SDValue();
@ -2864,9 +2906,6 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
}
case SPUISD::SHLQUAD_L_BITS:
case SPUISD::SHLQUAD_L_BYTES:
case SPUISD::VEC_SHL:
case SPUISD::VEC_SRL:
case SPUISD::VEC_SRA:
case SPUISD::ROTBYTES_LEFT: {
SDValue Op1 = N->getOperand(1);
@ -2994,9 +3033,6 @@ SPUTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
case SPUISD::VEC2PREFSLOT:
case SPUISD::SHLQUAD_L_BITS:
case SPUISD::SHLQUAD_L_BYTES:
case SPUISD::VEC_SHL:
case SPUISD::VEC_SRL:
case SPUISD::VEC_SRA:
case SPUISD::VEC_ROTL:
case SPUISD::VEC_ROTR:
case SPUISD::ROTBYTES_LEFT:

View File

@ -43,9 +43,6 @@ namespace llvm {
VEC2PREFSLOT, ///< Extract element 0
SHLQUAD_L_BITS, ///< Rotate quad left, by bits
SHLQUAD_L_BYTES, ///< Rotate quad left, by bytes
VEC_SHL, ///< Vector shift left
VEC_SRL, ///< Vector shift right (logical)
VEC_SRA, ///< Vector shift right (arithmetic)
VEC_ROTL, ///< Vector rotate left
VEC_ROTR, ///< Vector rotate right
ROTBYTES_LEFT, ///< Rotate bytes (loads -> ROTQBYI)

View File

@ -87,9 +87,9 @@ def SPUshlquad_l_bits: SDNode<"SPUISD::SHLQUAD_L_BITS", SPUvecshift_type, []>;
def SPUshlquad_l_bytes: SDNode<"SPUISD::SHLQUAD_L_BYTES", SPUvecshift_type, []>;
// Vector shifts (ISD::SHL,SRL,SRA are for _integers_ only):
def SPUvec_shl: SDNode<"SPUISD::VEC_SHL", SPUvecshift_type, []>;
def SPUvec_srl: SDNode<"SPUISD::VEC_SRL", SPUvecshift_type, []>;
def SPUvec_sra: SDNode<"SPUISD::VEC_SRA", SPUvecshift_type, []>;
def SPUvec_shl: SDNode<"ISD::SHL", SPUvecshift_type, []>;
def SPUvec_srl: SDNode<"ISD::SRL", SPUvecshift_type, []>;
def SPUvec_sra: SDNode<"ISD::SRA", SPUvecshift_type, []>;
def SPUvec_rotl: SDNode<"SPUISD::VEC_ROTL", SPUvecshift_type, []>;
def SPUvec_rotr: SDNode<"SPUISD::VEC_ROTR", SPUvecshift_type, []>;

View File

@ -0,0 +1,17 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep {long.*269488144} %t1.s | count 2
; RUN: grep {long.*16909060} %t1.s | count 1
; RUN: grep {long.*84281096} %t1.s | count 1
; RUN: grep {rotmai} %t1.s | count 1
; RUN: grep {lqa} %t1.s | count 1
; RUN: grep {shufb} %t1.s | count 1
; ModuleID = 'sext128.bc'
target datalayout = "E-p:32:32:128-i1:8:128-i8:8:128-i16:16:128-i32:32:128-i64:32:128-f32:32:128-f64:64:128-v64:128:128-v128:128:128-a0:0:128-s0:128:128"
target triple = "spu"
define i128 @sext_i64_i128(i64 %a) {
entry:
%0 = sext i64 %a to i128
ret i128 %0
}