For bug 122:

Separate Types from Values because Type no longer inherits from Value. The
changes for this are too numerous to list. In essence, any data structure
that contained a Value was doubled so that Types could be contained
similarly. New members include Types, TypeMap, CompactionTypes, and
CompactionTypeMap. Functions taking a Value* were overloaded with a variant
that takes a Type* that acts on the new data structures.

llvm-svn: 14608
This commit is contained in:
Reid Spencer 2004-07-04 11:42:49 +00:00
parent 50fc2ffa25
commit f15d7739d1
2 changed files with 238 additions and 134 deletions

View File

@ -14,19 +14,24 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/SlotCalculator.h"
#include "SlotCalculator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "Support/PostOrderIterator.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <functional>
using namespace llvm;
#if 0
#include <iostream>
#define SC_DEBUG(X) std::cerr << X
#else
#define SC_DEBUG(X)
@ -34,6 +39,7 @@ using namespace llvm;
SlotCalculator::SlotCalculator(const Module *M ) {
ModuleContainsAllFunctionConstants = false;
ModuleTypeLevel = 0;
TheModule = M;
// Preload table... Make sure that all of the primitive types are in the table
@ -42,7 +48,7 @@ SlotCalculator::SlotCalculator(const Module *M ) {
SC_DEBUG("Inserting primitive types:\n");
for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
assert(Type::getPrimitiveType((Type::TypeID)i));
insertValue(Type::getPrimitiveType((Type::TypeID)i), true);
insertType(Type::getPrimitiveType((Type::TypeID)i), true);
}
if (M == 0) return; // Empty table...
@ -59,7 +65,7 @@ SlotCalculator::SlotCalculator(const Function *M ) {
SC_DEBUG("Inserting primitive types:\n");
for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
assert(Type::getPrimitiveType((Type::TypeID)i));
insertValue(Type::getPrimitiveType((Type::TypeID)i), true);
insertType(Type::getPrimitiveType((Type::TypeID)i), true);
}
if (TheModule == 0) return; // Empty table...
@ -78,8 +84,13 @@ unsigned SlotCalculator::getGlobalSlot(const Value *V) const {
return I->second;
}
unsigned SlotCalculator::getGlobalSlot(const Type* T) const {
std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
assert(I != TypeMap.end() && "Didn't find global slot entry!");
return I->second;
}
SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) {
unsigned PIdx = Plane;
if (CompactionTable.empty()) { // No compaction table active?
// fall out
} else if (!CompactionTable[Plane].empty()) { // Compaction table active.
@ -89,22 +100,21 @@ SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) {
// Final case: compaction table active, but this plane is not
// compactified. If the type plane is compactified, unmap back to the
// global type plane corresponding to "Plane".
if (!CompactionTable[Type::TypeTyID].empty()) {
const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][Plane]);
std::map<const Value*, unsigned>::iterator It = NodeMap.find(Ty);
assert(It != NodeMap.end() && "Type not in global constant map?");
PIdx = It->second;
if (!CompactionTypes.empty()) {
const Type *Ty = CompactionTypes[Plane];
TypeMapType::iterator It = TypeMap.find(Ty);
assert(It != TypeMap.end() && "Type not in global constant map?");
Plane = It->second;
}
}
// Okay we are just returning an entry out of the main Table. Make sure the
// plane exists and return it.
if (PIdx >= Table.size())
Table.resize(PIdx+1);
return Table[PIdx];
if (Plane >= Table.size())
Table.resize(Plane+1);
return Table[Plane];
}
// processModule - Process all of the module level function declarations and
// types that are available.
//
@ -135,28 +145,27 @@ void SlotCalculator::processModule() {
// that contain constant strings so that the strings occur at the start of the
// plane, not somewhere in the middle.
//
TypePlane &Types = Table[Type::TypeTyID];
for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
if (AT->getElementType() == Type::SByteTy ||
AT->getElementType() == Type::UByteTy) {
TypePlane &Plane = Table[plane];
unsigned FirstNonStringID = 0;
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
if (isa<ConstantAggregateZero>(Plane[i]) ||
cast<ConstantArray>(Plane[i])->isString()) {
// Check to see if we have to shuffle this string around. If not,
// don't do anything.
if (i != FirstNonStringID) {
// Swap the plane entries....
std::swap(Plane[i], Plane[FirstNonStringID]);
// Keep the NodeMap up to date.
NodeMap[Plane[i]] = i;
NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
}
++FirstNonStringID;
}
AT->getElementType() == Type::UByteTy) {
TypePlane &Plane = Table[plane];
unsigned FirstNonStringID = 0;
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
if (isa<ConstantAggregateZero>(Plane[i]) ||
cast<ConstantArray>(Plane[i])->isString()) {
// Check to see if we have to shuffle this string around. If not,
// don't do anything.
if (i != FirstNonStringID) {
// Swap the plane entries....
std::swap(Plane[i], Plane[FirstNonStringID]);
// Keep the NodeMap up to date.
NodeMap[Plane[i]] = i;
NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
}
++FirstNonStringID;
}
}
}
@ -178,11 +187,11 @@ void SlotCalculator::processModule() {
F != E; ++F) {
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I){
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (isa<Constant>(I->getOperand(op)))
getOrCreateSlot(I->getOperand(op));
if (isa<Constant>(I->getOperand(op)))
getOrCreateSlot(I->getOperand(op));
getOrCreateSlot(I->getType());
if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I))
getOrCreateSlot(VAN->getArgType());
getOrCreateSlot(VAN->getArgType());
}
processSymbolTableConstants(&F->getSymbolTable());
}
@ -201,31 +210,24 @@ void SlotCalculator::processModule() {
// all non-value types are pushed to the end of the type table, giving nice
// low numbers to the types that can be used by instructions, thus reducing
// the amount of explodage we suffer.
if (Table[Type::TypeTyID].size() >= 64) {
// Scan through the type table moving value types to the start of the table.
TypePlane *Types = &Table[Type::TypeTyID];
if (Types.size() >= 64) {
unsigned FirstNonValueTypeID = 0;
for (unsigned i = 0, e = Types->size(); i != e; ++i)
if (cast<Type>((*Types)[i])->isFirstClassType() ||
cast<Type>((*Types)[i])->isPrimitiveType()) {
for (unsigned i = 0, e = Types.size(); i != e; ++i)
if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
// Check to see if we have to shuffle this type around. If not, don't
// do anything.
if (i != FirstNonValueTypeID) {
assert(i != Type::TypeTyID && FirstNonValueTypeID != Type::TypeTyID &&
"Cannot move around the type plane!");
// Swap the type ID's.
std::swap((*Types)[i], (*Types)[FirstNonValueTypeID]);
std::swap(Types[i], Types[FirstNonValueTypeID]);
// Keep the NodeMap up to date.
NodeMap[(*Types)[i]] = i;
NodeMap[(*Types)[FirstNonValueTypeID]] = FirstNonValueTypeID;
// Keep the TypeMap up to date.
TypeMap[Types[i]] = i;
TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
// When we move a type, make sure to move its value plane as needed.
if (Table.size() > FirstNonValueTypeID) {
if (Table.size() <= i) Table.resize(i+1);
std::swap(Table[i], Table[FirstNonValueTypeID]);
Types = &Table[Type::TypeTyID];
}
}
++FirstNonValueTypeID;
@ -248,7 +250,7 @@ void SlotCalculator::processSymbolTable(const SymbolTable *ST) {
for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
PE = ST->plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI)
VE = PI->second.end(); VI != VE; ++VI)
getOrCreateSlot(VI->second);
}
@ -262,14 +264,15 @@ void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) {
for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
PE = ST->plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI)
VE = PI->second.end(); VI != VE; ++VI)
if (isa<Constant>(VI->second))
getOrCreateSlot(VI->second);
getOrCreateSlot(VI->second);
}
void SlotCalculator::incorporateFunction(const Function *F) {
assert(ModuleLevel.size() == 0 && "Module already incorporated!");
assert((ModuleLevel.size() == 0 ||
ModuleTypeLevel == 0) && "Module already incorporated!");
SC_DEBUG("begin processFunction!\n");
@ -281,6 +284,7 @@ void SlotCalculator::incorporateFunction(const Function *F) {
ModuleLevel.resize(getNumPlanes());
for (unsigned i = 0, e = getNumPlanes(); i != e; ++i)
ModuleLevel[i] = getPlane(i).size();
ModuleTypeLevel = Types.size();
// Iterate over function arguments, adding them to the value table...
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
@ -295,8 +299,12 @@ void SlotCalculator::incorporateFunction(const Function *F) {
// Emit all of the constants that are being used by the instructions in
// the function...
for_each(constant_begin(F), constant_end(F),
bind_obj(this, &SlotCalculator::getOrCreateSlot));
constant_iterator CI = constant_begin(F);
constant_iterator CE = constant_end(F);
while ( CI != CE ) {
this->getOrCreateSlot(*CI);
++CI;
}
// If there is a symbol table, it is possible that the user has names for
// constants that are not being used. In this case, we will have problems
@ -328,13 +336,15 @@ void SlotCalculator::incorporateFunction(const Function *F) {
}
void SlotCalculator::purgeFunction() {
assert(ModuleLevel.size() != 0 && "Module not incorporated!");
assert((ModuleLevel.size() != 0 ||
ModuleTypeLevel != 0) && "Module not incorporated!");
unsigned NumModuleTypes = ModuleLevel.size();
SC_DEBUG("begin purgeFunction!\n");
// First, free the compaction map if used.
CompactionNodeMap.clear();
CompactionTypeMap.clear();
// Next, remove values from existing type planes
for (unsigned i = 0; i != NumModuleTypes; ++i) {
@ -355,8 +365,10 @@ void SlotCalculator::purgeFunction() {
// We don't need this state anymore, free it up.
ModuleLevel.clear();
ModuleTypeLevel = 0;
// Finally, remove any type planes defined by the function...
CompactionTypes.clear();
if (!CompactionTable.empty()) {
CompactionTable.clear();
} else {
@ -379,8 +391,7 @@ void SlotCalculator::purgeFunction() {
}
static inline bool hasNullValue(unsigned TyID) {
return TyID != Type::LabelTyID && TyID != Type::TypeTyID &&
TyID != Type::VoidTyID;
return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
}
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
@ -395,15 +406,13 @@ unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) {
// Make sure the type is in the table.
unsigned Ty;
if (!CompactionTable[Type::TypeTyID].empty())
if (!CompactionTypes.empty())
Ty = getOrCreateCompactionTableSlot(V->getType());
else // If the type plane was decompactified, use the global plane ID
Ty = getSlot(V->getType());
if (CompactionTable.size() <= Ty)
CompactionTable.resize(Ty+1);
assert(!isa<Type>(V) || ModuleLevel.empty());
TypePlane &TyPlane = CompactionTable[Ty];
// Make sure to insert the null entry if the thing we are inserting is not a
@ -422,6 +431,20 @@ unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) {
return SlotNo;
}
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
/// approximation of the compaction table.
unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Type *T) {
std::map<const Type*, unsigned>::iterator I =
CompactionTypeMap.lower_bound(T);
if (I != CompactionTypeMap.end() && I->first == T)
return I->second; // Already exists?
unsigned SlotNo = CompactionTypes.size();
SC_DEBUG("Inserting Compaction Type #" << SlotNo << ": " << T << "\n");
CompactionTypes.push_back(T);
CompactionTypeMap.insert(std::make_pair(T, SlotNo));
return SlotNo;
}
/// buildCompactionTable - Since all of the function constants and types are
/// stored in the module-level constant table, we don't need to emit a function
@ -432,12 +455,13 @@ unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) {
/// identifiers.
void SlotCalculator::buildCompactionTable(const Function *F) {
assert(CompactionNodeMap.empty() && "Compaction table already built!");
assert(CompactionTypeMap.empty() && "Compaction types already built!");
// First step, insert the primitive types.
CompactionTable.resize(Type::TypeTyID+1);
for (unsigned i = 0; i != Type::FirstDerivedTyID; ++i) {
CompactionTable.resize(Type::LastPrimitiveTyID+1);
for (unsigned i = 0; i <= Type::LastPrimitiveTyID; ++i) {
const Type *PrimTy = Type::getPrimitiveType((Type::TypeID)i);
CompactionTable[Type::TypeTyID].push_back(PrimTy);
CompactionNodeMap[PrimTy] = i;
CompactionTypes.push_back(PrimTy);
CompactionTypeMap[PrimTy] = i;
}
// Next, include any types used by function arguments.
@ -445,7 +469,7 @@ void SlotCalculator::buildCompactionTable(const Function *F) {
getOrCreateCompactionTableSlot(I->getType());
// Next, find all of the types and values that are referred to by the
// instructions in the program.
// instructions in the function.
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
getOrCreateCompactionTableSlot(I->getType());
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
@ -466,19 +490,22 @@ void SlotCalculator::buildCompactionTable(const Function *F) {
for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
PE = ST.plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI)
VE = PI->second.end(); VI != VE; ++VI)
if (isa<Constant>(VI->second) || isa<GlobalValue>(VI->second))
getOrCreateCompactionTableSlot(VI->second);
getOrCreateCompactionTableSlot(VI->second);
// Now that we have all of the values in the table, and know what types are
// referenced, make sure that there is at least the zero initializer in any
// used type plane. Since the type was used, we will be emitting instructions
// to the plane even if there are no constants in it.
CompactionTable.resize(CompactionTable[Type::TypeTyID].size());
CompactionTable.resize(CompactionTypes.size());
for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i)
if (CompactionTable[i].empty() && i != Type::VoidTyID &&
if (CompactionTable[i].empty() && (i != Type::VoidTyID) &&
i != Type::LabelTyID) {
const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][i]);
const Type *Ty = CompactionTypes[i];
SC_DEBUG("Getting Null Value #" << i << " for Type " << Ty << "\n");
assert(Ty->getTypeID() != Type::VoidTyID);
assert(Ty->getTypeID() != Type::LabelTyID);
getOrCreateCompactionTableSlot(Constant::getNullValue(Ty));
}
@ -487,13 +514,13 @@ void SlotCalculator::buildCompactionTable(const Function *F) {
// it will not save us anything. Because we have not yet incorporated the
// function body itself yet, we don't know whether or not it's a good idea to
// compactify other planes. We will defer this decision until later.
TypePlane &GlobalTypes = Table[Type::TypeTyID];
TypeList &GlobalTypes = Types;
// All of the values types will be scrunched to the start of the types plane
// of the global table. Figure out just how many there are.
assert(!GlobalTypes.empty() && "No global types???");
unsigned NumFCTypes = GlobalTypes.size()-1;
while (!cast<Type>(GlobalTypes[NumFCTypes])->isFirstClassType())
while (!GlobalTypes[NumFCTypes]->isFirstClassType())
--NumFCTypes;
// If there are fewer that 64 types, no instructions will be exploded due to
@ -506,29 +533,27 @@ void SlotCalculator::buildCompactionTable(const Function *F) {
// CompactionNodeMap for non-types though.
std::vector<TypePlane> TmpCompactionTable;
std::swap(CompactionTable, TmpCompactionTable);
TypePlane Types;
std::swap(Types, TmpCompactionTable[Type::TypeTyID]);
TypeList TmpTypes;
std::swap(TmpTypes, CompactionTypes);
// Move each plane back over to the uncompactified plane
while (!Types.empty()) {
const Type *Ty = cast<Type>(Types.back());
Types.pop_back();
CompactionNodeMap.erase(Ty); // Decompactify type!
while (!TmpTypes.empty()) {
const Type *Ty = TmpTypes.back();
TmpTypes.pop_back();
CompactionTypeMap.erase(Ty); // Decompactify type!
if (Ty != Type::TypeTy) {
// Find the global slot number for this type.
int TySlot = getSlot(Ty);
assert(TySlot != -1 && "Type doesn't exist in global table?");
// Now we know where to put the compaction table plane.
if (CompactionTable.size() <= unsigned(TySlot))
CompactionTable.resize(TySlot+1);
// Move the plane back into the compaction table.
std::swap(CompactionTable[TySlot], TmpCompactionTable[Types.size()]);
// Find the global slot number for this type.
int TySlot = getSlot(Ty);
assert(TySlot != -1 && "Type doesn't exist in global table?");
// Now we know where to put the compaction table plane.
if (CompactionTable.size() <= unsigned(TySlot))
CompactionTable.resize(TySlot+1);
// Move the plane back into the compaction table.
std::swap(CompactionTable[TySlot], TmpCompactionTable[TmpTypes.size()]);
// And remove the empty plane we just moved in.
TmpCompactionTable.pop_back();
}
// And remove the empty plane we just moved in.
TmpCompactionTable.pop_back();
}
}
}
@ -544,9 +569,9 @@ void SlotCalculator::buildCompactionTable(const Function *F) {
/// Note that the type plane has already been compactified if possible.
///
void SlotCalculator::pruneCompactionTable() {
TypePlane &TyPlane = CompactionTable[Type::TypeTyID];
TypeList &TyPlane = CompactionTypes;
for (unsigned ctp = 0, e = CompactionTable.size(); ctp != e; ++ctp)
if (ctp != Type::TypeTyID && !CompactionTable[ctp].empty()) {
if (!CompactionTable[ctp].empty()) {
TypePlane &CPlane = CompactionTable[ctp];
unsigned GlobalSlot = ctp;
if (!TyPlane.empty())
@ -603,7 +628,6 @@ void SlotCalculator::pruneCompactionTable() {
}
}
int SlotCalculator::getSlot(const Value *V) const {
// If there is a CompactionTable active...
if (!CompactionNodeMap.empty()) {
@ -626,6 +650,23 @@ int SlotCalculator::getSlot(const Value *V) const {
return -1;
}
int SlotCalculator::getSlot(const Type*T) const {
// If there is a CompactionTable active...
if (!CompactionTypeMap.empty()) {
std::map<const Type*, unsigned>::const_iterator I =
CompactionTypeMap.find(T);
if (I != CompactionTypeMap.end())
return (int)I->second;
// Otherwise, if it's not in the compaction table, it must be in a
// non-compactified plane.
}
std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
if (I != TypeMap.end())
return (int)I->second;
return -1;
}
int SlotCalculator::getOrCreateSlot(const Value *V) {
if (V->getType() == Type::VoidTy) return -1;
@ -665,6 +706,11 @@ int SlotCalculator::getOrCreateSlot(const Value *V) {
return insertValue(V);
}
int SlotCalculator::getOrCreateSlot(const Type* T) {
int SlotNo = getSlot(T); // Check to see if it's already in!
if (SlotNo != -1) return SlotNo;
return insertType(T);
}
int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
assert(D && "Can't insert a null value!");
@ -674,7 +720,7 @@ int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
// insert the value into the compaction map, not into the global map.
if (!CompactionNodeMap.empty()) {
if (D->getType() == Type::VoidTy) return -1; // Do not insert void values
assert(!isa<Type>(D) && !isa<Constant>(D) && !isa<GlobalValue>(D) &&
assert(!isa<Constant>(D) && !isa<GlobalValue>(D) &&
"Types, constants, and globals should be in global SymTab!");
int Plane = getSlot(D->getType());
@ -694,43 +740,48 @@ int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
return -1; // We do need types unconditionally though
}
// If it's a type, make sure that all subtypes of the type are included...
if (const Type *TheTy = dyn_cast<Type>(D)) {
// Insert the current type before any subtypes. This is important because
// recursive types elements are inserted in a bottom up order. Changing
// this here can break things. For example:
//
// global { \2 * } { { \2 }* null }
//
int ResultSlot = doInsertValue(TheTy);
SC_DEBUG(" Inserted type: " << TheTy->getDescription() << " slot=" <<
ResultSlot << "\n");
// Loop over any contained types in the definition... in post
// order.
//
for (po_iterator<const Type*> I = po_begin(TheTy), E = po_end(TheTy);
I != E; ++I) {
if (*I != TheTy) {
const Type *SubTy = *I;
// If we haven't seen this sub type before, add it to our type table!
if (getSlot(SubTy) == -1) {
SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n");
SC_DEBUG(int Slot = );
doInsertValue(SubTy);
SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() <<
" slot=" << Slot << "\n");
}
}
}
return ResultSlot;
}
// Okay, everything is happy, actually insert the silly value now...
return doInsertValue(D);
}
int SlotCalculator::insertType(const Type *Ty, bool dontIgnore) {
assert(Ty && "Can't insert a null type!");
assert(getSlot(Ty) == -1 && "Type is already in the table!");
// If we are building a compaction map, and if this plane is being compacted,
// insert the value into the compaction map, not into the global map.
if (!CompactionTypeMap.empty()) {
getOrCreateCompactionTableSlot(Ty);
}
// Insert the current type before any subtypes. This is important because
// recursive types elements are inserted in a bottom up order. Changing
// this here can break things. For example:
//
// global { \2 * } { { \2 }* null }
//
int ResultSlot = doInsertType(Ty);
SC_DEBUG(" Inserted type: " << Ty->getDescription() << " slot=" <<
ResultSlot << "\n");
// Loop over any contained types in the definition... in post
// order.
for (po_iterator<const Type*> I = po_begin(Ty), E = po_end(Ty);
I != E; ++I) {
if (*I != Ty) {
const Type *SubTy = *I;
// If we haven't seen this sub type before, add it to our type table!
if (getSlot(SubTy) == -1) {
SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n");
int Slot = doInsertType(SubTy);
SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() <<
" slot=" << Slot << "\n");
}
}
}
return ResultSlot;
}
// doInsertValue - This is a small helper function to be called only
// be insertValue.
//
@ -750,7 +801,7 @@ int SlotCalculator::doInsertValue(const Value *D) {
ValSlot = getGlobalSlot(Typ);
if (ValSlot == -1) { // Have we already entered this type?
// Nope, this is the first we have seen the type, process it.
ValSlot = insertValue(Typ, true);
ValSlot = insertType(Typ, true);
assert(ValSlot != -1 && "ProcessType returned -1 for a type?");
}
Ty = (unsigned)ValSlot;
@ -778,10 +829,25 @@ int SlotCalculator::doInsertValue(const Value *D) {
Table[Ty].push_back(D);
SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" <<
DestSlot << " [");
DestSlot << " [");
// G = Global, C = Constant, T = Type, F = Function, o = other
SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" :
(isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o")))));
(isa<Function>(D) ? "F" : "o"))));
SC_DEBUG("]\n");
return (int)DestSlot;
}
// doInsertType - This is a small helper function to be called only
// be insertType.
//
int SlotCalculator::doInsertType(const Type *Ty) {
// Insert node into table and NodeMap...
unsigned DestSlot = TypeMap[Ty] = Types.size();
Types.push_back(Ty);
SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n" );
return (int)DestSlot;
}
// vim: sw=2 ai

View File

@ -26,6 +26,7 @@
namespace llvm {
class Value;
class Type;
class Module;
class Function;
class SymbolTable;
@ -34,9 +35,15 @@ class ConstantArray;
class SlotCalculator {
const Module *TheModule;
typedef std::vector<const Type*> TypeList;
typedef std::vector<const Value*> TypePlane;
std::vector<TypePlane> Table;
std::map<const Value*, unsigned> NodeMap;
TypeList Types;
typedef std::map<const Value*, unsigned> NodeMapType;
NodeMapType NodeMap;
typedef std::map<const Type*, unsigned> TypeMapType;
TypeMapType TypeMap;
/// ConstantStrings - If we are indexing for a bytecode file, this keeps track
/// of all of the constants strings that need to be emitted.
@ -46,6 +53,7 @@ class SlotCalculator {
/// and which values belong to the currently incorporated function.
///
std::vector<unsigned> ModuleLevel;
unsigned ModuleTypeLevel;
/// ModuleContainsAllFunctionConstants - This flag is set to true if all
/// function constants are incorporated into the module constant table. This
@ -57,7 +65,11 @@ class SlotCalculator {
/// instructions in a function body. The 'getSlot()' method automatically
/// returns these entries if applicable, or the global entries if not.
std::vector<TypePlane> CompactionTable;
std::map<const Value*, unsigned> CompactionNodeMap;
TypeList CompactionTypes;
typedef std::map<const Value*, unsigned> CompactionNodeMapType;
CompactionNodeMapType CompactionNodeMap;
typedef std::map<const Type*, unsigned> CompactionTypeMapType;
CompactionTypeMapType CompactionTypeMap;
SlotCalculator(const SlotCalculator &); // DO NOT IMPLEMENT
void operator=(const SlotCalculator &); // DO NOT IMPLEMENT
@ -70,10 +82,12 @@ public:
/// plane. This returns < 0 on error!
///
int getSlot(const Value *V) const;
int getSlot(const Type* T) const;
/// getGlobalSlot - Return a slot number from the global table. This can only
/// be used when a compaction table is active.
unsigned getGlobalSlot(const Value *V) const;
unsigned getGlobalSlot(const Type *V) const;
inline unsigned getNumPlanes() const {
if (CompactionTable.empty())
@ -81,11 +95,29 @@ public:
else
return CompactionTable.size();
}
inline unsigned getNumTypes() const {
if (CompactionTypes.empty())
return Types.size();
else
return CompactionTypes.size();
}
inline unsigned getModuleLevel(unsigned Plane) const {
return Plane < ModuleLevel.size() ? ModuleLevel[Plane] : 0;
}
/// Returns the number of types in the type list that are at module level
inline unsigned getModuleTypeLevel() const {
return ModuleTypeLevel;
}
TypePlane &getPlane(unsigned Plane);
TypeList& getTypes() {
if (!CompactionTypes.empty())
return CompactionTypes;
return Types;
}
/// incorporateFunction/purgeFunction - If you'd like to deal with a function,
/// use these two methods to get its data into the SlotCalculator!
@ -104,21 +136,26 @@ public:
return CompactionTable;
}
const TypeList& getCompactionTypes() const { return CompactionTypes; }
private:
// getOrCreateSlot - Values can be crammed into here at will... if
// they haven't been inserted already, they get inserted, otherwise
// they are ignored.
//
int getOrCreateSlot(const Value *D);
int getOrCreateSlot(const Type* T);
// insertValue - Insert a value into the value table... Return the
// slot that it occupies, or -1 if the declaration is to be ignored
// because of the IgnoreNamedNodes flag.
//
int insertValue(const Value *D, bool dontIgnore = false);
int insertType(const Type* T, bool dontIgnore = false );
// doInsertValue - Small helper function to be called only be insertVal.
int doInsertValue(const Value *D);
int doInsertType(const Type*T);
// processModule - Process all of the module level function declarations and
// types that are available.
@ -133,6 +170,7 @@ private:
void buildCompactionTable(const Function *F);
unsigned getOrCreateCompactionTableSlot(const Value *V);
unsigned getOrCreateCompactionTableSlot(const Type *V);
void pruneCompactionTable();
};