[LoopExtractor] Convert LoopExtractor from LoopPass to ModulePass

The LoopExtractor created new functions (by definition), which violates
the restrictions of a LoopPass.
The correct implementation of this pass should be as a ModulePass.
Includes reverting rL82990 implications on the LoopExtractor.

Fixes PR3082 and PR8929.

Differential Revision: https://reviews.llvm.org/D69069
This commit is contained in:
Ehud Katz 2020-02-09 12:25:21 +02:00
parent ab4b452855
commit f6fd87fc2b
6 changed files with 323 additions and 71 deletions

View File

@ -15,7 +15,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
@ -36,22 +36,30 @@ using namespace llvm;
STATISTIC(NumExtracted, "Number of loops extracted");
namespace {
struct LoopExtractor : public LoopPass {
struct LoopExtractor : public ModulePass {
static char ID; // Pass identification, replacement for typeid
// The number of natural loops to extract from the program into functions.
unsigned NumLoops;
explicit LoopExtractor(unsigned numLoops = ~0)
: LoopPass(ID), NumLoops(numLoops) {
initializeLoopExtractorPass(*PassRegistry::getPassRegistry());
}
: ModulePass(ID), NumLoops(numLoops) {
initializeLoopExtractorPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &) override;
bool runOnModule(Module &M) override;
bool runOnFunction(Function &F);
bool extractLoops(Loop::iterator From, Loop::iterator To, LoopInfo &LI,
DominatorTree &DT);
bool extractLoop(Loop *L, LoopInfo &LI, DominatorTree &DT);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(BreakCriticalEdgesID);
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addUsedIfAvailable<AssumptionCacheTracker>();
}
};
@ -63,6 +71,7 @@ INITIALIZE_PASS_BEGIN(LoopExtractor, "loop-extract",
INITIALIZE_PASS_DEPENDENCY(BreakCriticalEdges)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopExtractor, "loop-extract",
"Extract loops into new functions", false, false)
@ -83,83 +92,131 @@ INITIALIZE_PASS(SingleLoopExtractor, "loop-extract-single",
//
Pass *llvm::createLoopExtractorPass() { return new LoopExtractor(); }
bool LoopExtractor::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipLoop(L))
bool LoopExtractor::runOnModule(Module &M) {
if (skipModule(M))
return false;
// Only visit top-level loops.
if (L->getParentLoop())
if (M.empty())
return false;
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
if (!NumLoops)
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
bool Changed = false;
// If there is more than one top-level loop in this function, extract all of
// the loops. Otherwise there is exactly one top-level loop; in this case if
// this function is more than a minimal wrapper around the loop, extract
// the loop.
bool ShouldExtractLoop = false;
// The end of the function list may change (new functions will be added at the
// end), so we run from the first to the current last.
auto I = M.begin(), E = --M.end();
while (true) {
Function &F = *I;
// Extract the loop if the entry block doesn't branch to the loop header.
Instruction *EntryTI =
L->getHeader()->getParent()->getEntryBlock().getTerminator();
if (!isa<BranchInst>(EntryTI) ||
!cast<BranchInst>(EntryTI)->isUnconditional() ||
EntryTI->getSuccessor(0) != L->getHeader()) {
ShouldExtractLoop = true;
} else {
// Check to see if any exits from the loop are more than just return
// blocks.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (!isa<ReturnInst>(ExitBlocks[i]->getTerminator())) {
ShouldExtractLoop = true;
break;
}
Changed |= runOnFunction(F);
if (!NumLoops)
break;
// If this is the last function.
if (I == E)
break;
++I;
}
if (ShouldExtractLoop) {
// We must omit EH pads. EH pads must accompany the invoke
// instruction. But this would result in a loop in the extracted
// function. An infinite cycle occurs when it tries to extract that loop as
// well.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (ExitBlocks[i]->isEHPad()) {
ShouldExtractLoop = false;
break;
}
}
if (ShouldExtractLoop) {
if (NumLoops == 0) return Changed;
--NumLoops;
AssumptionCache *AC = nullptr;
Function &Func = *L->getHeader()->getParent();
if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
AC = ACT->lookupAssumptionCache(Func);
CodeExtractorAnalysisCache CEAC(Func);
CodeExtractor Extractor(DT, *L, false, nullptr, nullptr, AC);
if (Extractor.extractCodeRegion(CEAC) != nullptr) {
Changed = true;
// After extraction, the loop is replaced by a function call, so
// we shouldn't try to run any more loop passes on it.
LPM.markLoopAsDeleted(*L);
LI.erase(L);
}
++NumExtracted;
}
return Changed;
}
bool LoopExtractor::runOnFunction(Function &F) {
// Do not modify `optnone` functions.
if (F.hasOptNone())
return false;
if (F.empty())
return false;
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>(F).getLoopInfo();
// If there are no loops in the function.
if (LI.empty())
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
// If there is more than one top-level loop in this function, extract all of
// the loops.
if (std::next(LI.begin()) != LI.end())
return extractLoops(LI.begin(), LI.end(), LI, DT);
// Otherwise there is exactly one top-level loop.
Loop *TLL = *LI.begin();
// If the loop is in LoopSimplify form, then extract it only if this function
// is more than a minimal wrapper around the loop.
if (TLL->isLoopSimplifyForm()) {
bool ShouldExtractLoop = false;
// Extract the loop if the entry block doesn't branch to the loop header.
Instruction *EntryTI = F.getEntryBlock().getTerminator();
if (!isa<BranchInst>(EntryTI) ||
!cast<BranchInst>(EntryTI)->isUnconditional() ||
EntryTI->getSuccessor(0) != TLL->getHeader()) {
ShouldExtractLoop = true;
} else {
// Check to see if any exits from the loop are more than just return
// blocks.
SmallVector<BasicBlock *, 8> ExitBlocks;
TLL->getExitBlocks(ExitBlocks);
for (auto *ExitBlock : ExitBlocks)
if (!isa<ReturnInst>(ExitBlock->getTerminator())) {
ShouldExtractLoop = true;
break;
}
}
if (ShouldExtractLoop)
return extractLoop(TLL, LI, DT);
}
// Okay, this function is a minimal container around the specified loop.
// If we extract the loop, we will continue to just keep extracting it
// infinitely... so don't extract it. However, if the loop contains any
// sub-loops, extract them.
return extractLoops(TLL->begin(), TLL->end(), LI, DT);
}
bool LoopExtractor::extractLoops(Loop::iterator From, Loop::iterator To,
LoopInfo &LI, DominatorTree &DT) {
bool Changed = false;
SmallVector<Loop *, 8> Loops;
// Save the list of loops, as it may change.
Loops.assign(From, To);
for (Loop *L : Loops) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
continue;
Changed |= extractLoop(L, LI, DT);
if (!NumLoops)
break;
}
return Changed;
}
bool LoopExtractor::extractLoop(Loop *L, LoopInfo &LI, DominatorTree &DT) {
assert(NumLoops != 0);
AssumptionCache *AC = nullptr;
Function &Func = *L->getHeader()->getParent();
if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
AC = ACT->lookupAssumptionCache(Func);
CodeExtractorAnalysisCache CEAC(Func);
CodeExtractor Extractor(DT, *L, false, nullptr, nullptr, AC);
if (Extractor.extractCodeRegion(CEAC)) {
LI.erase(L);
--NumLoops;
++NumExtracted;
return true;
}
return false;
}
// createSingleLoopExtractorPass - This pass extracts one natural loop from the
// program into a function if it can. This is used by bugpoint.
//

View File

@ -54,7 +54,6 @@ attributes #0 = { optnone noinline }
; Loop IR passes that opt doesn't turn on by default.
; OPT-LOOP-DAG: Skipping pass 'Delete dead loops'
; OPT-LOOP-DAG: Skipping pass 'Extract loops into new functions'
; OPT-LOOP-DAG: Skipping pass 'Induction Variable Simplification'
; OPT-LOOP-DAG: Skipping pass 'Loop Invariant Code Motion'
; OPT-LOOP-DAG: Skipping pass 'Loop Strength Reduction'

View File

@ -0,0 +1,68 @@
; RUN: opt < %s -loop-extract -S | FileCheck %s
; This function has 2 simple loops and they should be extracted into 2 new functions.
define void @test3() {
; CHECK-LABEL: @test3(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %codeRepl1
; CHECK: codeRepl1:
; CHECK-NEXT: call void @test3.loop.0()
; CHECK-NEXT: br label %loop.0.loop.1_crit_edge
; CHECK: loop.0.loop.1_crit_edge:
; CHECK-NEXT: br label %codeRepl
; CHECK: codeRepl:
; CHECK-NEXT: call void @test3.loop.1()
; CHECK-NEXT: br label %exit
; CHECK: exit:
; CHECK-NEXT: ret void
entry:
br label %loop.0
loop.0: ; preds = %loop.0, %entry
%index.0 = phi i32 [ 10, %entry ], [ %next.0, %loop.0 ]
tail call void @foo()
%next.0 = add nsw i32 %index.0, -1
%repeat.0 = icmp sgt i32 %index.0, 1
br i1 %repeat.0, label %loop.0, label %loop.1
loop.1: ; preds = %loop.0, %loop.1
%index.1 = phi i32 [ %next.1, %loop.1 ], [ 10, %loop.0 ]
tail call void @foo()
%next.1 = add nsw i32 %index.1, -1
%repeat.1 = icmp sgt i32 %index.1, 1
br i1 %repeat.1, label %loop.1, label %exit
exit: ; preds = %loop.1
ret void
}
declare void @foo()
; CHECK-LABEL: define internal void @test3.loop.1()
; CHECK-NEXT: newFuncRoot:
; CHECK-NEXT: br label %loop.1
; CHECK: exit.exitStub:
; CHECK-NEXT: ret void
; CHECK: loop.1:
; CHECK-NEXT: %index.1 = phi i32 [ %next.1, %loop.1.loop.1_crit_edge ], [ 10, %newFuncRoot ]
; CHECK-NEXT: tail call void @foo()
; CHECK-NEXT: %next.1 = add nsw i32 %index.1, -1
; CHECK-NEXT: %repeat.1 = icmp sgt i32 %index.1, 1
; CHECK-NEXT: br i1 %repeat.1, label %loop.1.loop.1_crit_edge, label %exit.exitStub
; CHECK: loop.1.loop.1_crit_edge:
; CHECK-NEXT: br label %loop.1
; CHECK-LABEL: define internal void @test3.loop.0()
; CHECK-NEXT: newFuncRoot:
; CHECK-NEXT: br label %loop.0
; CHECK: loop.0.loop.1_crit_edge.exitStub:
; CHECK-NEXT: ret void
; CHECK: loop.0:
; CHECK-NEXT: %index.0 = phi i32 [ 10, %newFuncRoot ], [ %next.0, %loop.0.loop.0_crit_edge ]
; CHECK-NEXT: tail call void @foo()
; CHECK-NEXT: %next.0 = add nsw i32 %index.0, -1
; CHECK-NEXT: %repeat.0 = icmp sgt i32 %index.0, 1
; CHECK-NEXT: br i1 %repeat.0, label %loop.0.loop.0_crit_edge, label %loop.0.loop.1_crit_edge.exitStub
; CHECK: loop.0.loop.0_crit_edge:
; CHECK-NEXT: br label %loop.0

View File

@ -0,0 +1,46 @@
; RUN: opt < %s -inline -loop-extract -S | FileCheck %s
; RUN: opt < %s -argpromotion -loop-extract -S | FileCheck %s
; This test used to trigger an assert (PR8929).
define void @test() {
; CHECK-LABEL: define void @test()
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %codeRepl
; CHECK: codeRepl:
; CHECK-NEXT: call void @test.loopentry()
; CHECK-NEXT: br label %loopexit
; CHECK: loopexit:
; CHECK-NEXT: br label %exit
; CHECK: exit:
; CHECK-NEXT: ret void
entry:
br label %loopentry
loopentry: ; preds = %loopbody, %entry
br i1 undef, label %loopbody, label %loopexit
loopbody: ; preds = %codeRepl1
call void @foo()
br label %loopentry
loopexit: ; preds = %codeRepl
br label %exit
exit: ; preds = %loopexit
ret void
}
declare void @foo()
; CHECK-LABEL: define internal void @test.loopentry()
; CHECK-NEXT: newFuncRoot:
; CHECK-NEXT: br label %loopentry
; CHECK: loopexit.exitStub:
; CHECK-NEXT: ret void
; CHECK: loopentry:
; CHECK-NEXT: br i1 false, label %loopbody, label %loopexit.exitStub
; CHECK: loopbody:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: br label %loopentry

View File

@ -0,0 +1,47 @@
; RUN: opt < %s -mergereturn -loop-extract -S | FileCheck %s
; This test used to enter an infinite loop, until out of memory (PR3082).
define void @test() {
; CHECK-LABEL: define void @test()
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %codeRepl
; CHECK: codeRepl:
; CHECK-NEXT: %targetBlock = call i1 @test.loopentry()
; CHECK-NEXT: br i1 %targetBlock, label %exit.1, label %exit.0
; CHECK: exit.0:
; CHECK-NEXT: br label %UnifiedReturnBlock
; CHECK: exit.1:
; CHECK-NEXT: br label %UnifiedReturnBlock
; CHECK: UnifiedReturnBlock:
; CHECK-NEXT: ret void
entry:
br label %loopentry
loopentry: ; preds = %loopexit, %entry
br i1 undef, label %exit.1, label %loopexit
loopexit: ; preds = %loopentry
br i1 undef, label %loopentry, label %exit.0
exit.0: ; preds = %loopexit
ret void
exit.1: ; preds = %loopentry
ret void
}
; CHECK-LABEL: define internal i1 @test.loopentry()
; CHECK-NEXT: newFuncRoot:
; CHECK-NEXT: br label %loopentry
; CHECK: exit.1.exitStub:
; CHECK-NEXT: ret i1 true
; CHECK: exit.0.exitStub:
; CHECK-NEXT: ret i1 false
; CHECK: loopentry:
; CHECK-NEXT: br i1 true, label %exit.1.exitStub, label %loopexit
; CHECK: loopexit:
; CHECK-NEXT: br i1 false, label %loopexit.loopentry_crit_edge, label %exit.0.exitStub
; CHECK: loopexit.loopentry_crit_edge:
; CHECK-NEXT: br label %loopentry

View File

@ -0,0 +1,35 @@
; RUN: opt < %s -loop-extract -S | FileCheck %s
; This function is just a minimal wrapper around a loop and should not be extracted.
define void @test() {
; CHECK-LABEL: @test(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: %index = phi i32 [ 0, %entry ], [ %next, %loop.loop_crit_edge ]
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: %next = add nsw i32 %index, -1
; CHECK-NEXT: %repeat = icmp sgt i32 %index, 1
; CHECK-NEXT: br i1 %repeat, label %loop.loop_crit_edge, label %exit
; CHECK: loop.loop_crit_edge:
; CHECK-NEXT: br label %loop
; CHECK: exit:
; CHECK-NEXT: ret void
entry:
br label %loop
loop: ; preds = %loop, %entry
%index = phi i32 [ 0, %entry ], [ %next, %loop ]
call void @foo()
%next = add nsw i32 %index, -1
%repeat = icmp sgt i32 %index, 1
br i1 %repeat, label %loop, label %exit
exit: ; preds = %loop
ret void
}
declare void @foo()
; CHECK-NOT: define