[BrachProbablityInfo] Proportional distribution of reachable probabilities

When fixing probability of unreachable edges in
BranchProbabilityInfo::calcMetadataWeights() proportionally distribute
remainder probability over the reachable edges. The old implementation
distributes the remainder probability evenly.
See examples in the fixed tests.

Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80611
This commit is contained in:
Yevgeny Rouban 2020-06-02 11:28:12 +07:00
parent 04069444bf
commit f732af67dd
2 changed files with 75 additions and 37 deletions

View File

@ -102,7 +102,7 @@ static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will equally share the remaining part.
/// All reachable probability will proportionally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
/// Weight for a branch taken going into a cold block.
@ -349,35 +349,69 @@ bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
// Examine the metadata against unreachable heuristic.
// If the unreachable heuristic is more strong then we use it for this edge.
if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
auto UnreachableProb = UR_TAKEN_PROB;
for (auto I : UnreachableIdxs)
if (UnreachableProb < BP[I]) {
BP[I] = UnreachableProb;
}
if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
setEdgeProbability(BB, BP);
return true;
}
// Because of possible rounding errors and the above fix up for
// the unreachable heuristic the sum of probabilities of all edges may be
// less than 1.0. Distribute the remaining probability (calculated as
// 1.0 - (sum of BP[i])) evenly among all the reachable edges.
auto ToDistribute = BranchProbability::getOne();
for (auto &P : BP)
ToDistribute -= P;
auto UnreachableProb = UR_TAKEN_PROB;
for (auto I : UnreachableIdxs)
if (UnreachableProb < BP[I]) {
BP[I] = UnreachableProb;
}
// If we modified the probability of some edges then we must distribute
// the difference between reachable blocks.
// TODO: This spreads ToDistribute evenly upon the reachable edges. A better
// distribution would be proportional. So the relation between weights of
// the reachable edges would be kept unchanged. That is for any reachable
// edges i and j:
// newBP[i] / newBP[j] == oldBP[i] / oldBP[j]
// newBP[i] / oldBP[i] == newBP[j] / oldBP[j] ==
// == Denominator / (Denominator - ToDistribute)
// newBP[i] = oldBP[i] * Denominator / (Denominator - ToDistribute)
BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
if (PerEdge > BranchProbability::getZero())
// Sum of all edge probabilities must be 1.0. If we modified the probability
// of some edges then we must distribute the introduced difference over the
// reachable blocks.
//
// Proportional distribution: the relation between probabilities of the
// reachable edges is kept unchanged. That is for any reachable edges i and j:
// newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
// newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
// Where K is independent of i,j.
// newBP[i] == oldBP[i] * K
// We need to find K.
// Make sum of all reachables of the left and right parts:
// sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
// Sum of newBP must be equal to 1.0:
// sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
// sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
// Where sum_of_unreachable(newBP) is what has been just changed.
// Finally:
// K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
// K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
BranchProbability NewUnreachableSum = BranchProbability::getZero();
for (auto I : UnreachableIdxs)
NewUnreachableSum += BP[I];
BranchProbability NewReachableSum =
BranchProbability::getOne() - NewUnreachableSum;
BranchProbability OldReachableSum = BranchProbability::getZero();
for (auto I : ReachableIdxs)
OldReachableSum += BP[I];
if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
if (OldReachableSum.isZero()) {
// If all oldBP[i] are zeroes then the proportional distribution results
// in all zero probabilities and the error stays big. In this case we
// evenly spread NewReachableSum over the reachable edges.
BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
for (auto I : ReachableIdxs)
BP[I] += PerEdge;
BP[I] = PerEdge;
} else {
for (auto I : ReachableIdxs) {
// We use uint64_t to avoid double rounding error of the following
// calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
// The formula is taken from the private constructor
// BranchProbability(uint32_t Numerator, uint32_t Denominator)
uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
BP[I].getNumerator();
uint32_t Div = static_cast<uint32_t>(
divideNearest(Mul, OldReachableSum.getNumerator()));
BP[I] = BranchProbability::getRaw(Div);
}
}
}
setEdgeProbability(BB, BP);

View File

@ -469,11 +469,12 @@ entry:
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !8
; Reachable probabilities keep their relation: 4/64/4/4 = 5.26% / 84.21% / 5.26% / 5.26%.
; CHECK: edge entry -> case_a probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_b probability is 0x07ffffff / 0x80000000 = 6.25%
; CHECK: edge entry -> case_c probability is 0x67ffffff / 0x80000000 = 81.25% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x07ffffff / 0x80000000 = 6.25%
; CHECK: edge entry -> case_e probability is 0x07ffffff / 0x80000000 = 6.25%
; CHECK: edge entry -> case_b probability is 0x06bca1af / 0x80000000 = 5.26%
; CHECK: edge entry -> case_c probability is 0x6bca1af3 / 0x80000000 = 84.21% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x06bca1af / 0x80000000 = 5.26%
; CHECK: edge entry -> case_e probability is 0x06bca1af / 0x80000000 = 5.26%
case_a:
unreachable
@ -511,11 +512,13 @@ entry:
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !9
; Reachable probabilities keep their relation: 64/4/4 = 88.89% / 5.56% / 5.56%.
; CHECK: edge entry -> case_a probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_b probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_c probability is 0x6aaaaaaa / 0x80000000 = 83.33% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x0aaaaaaa / 0x80000000 = 8.33%
; CHECK: edge entry -> case_e probability is 0x0aaaaaaa / 0x80000000 = 8.33%
; CHECK: edge entry -> case_c probability is 0x71c71c71 / 0x80000000 = 88.89% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x071c71c7 / 0x80000000 = 5.56%
; CHECK: edge entry -> case_e probability is 0x071c71c7 / 0x80000000 = 5.56%
case_a:
unreachable
@ -551,11 +554,12 @@ entry:
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !10
; Reachable probabilities keep their relation: 64/4/4 = 88.89% / 5.56% / 5.56%.
; CHECK: edge entry -> case_a probability is 0x00000000 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_b probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_c probability is 0x6e08fb82 / 0x80000000 = 85.96% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x08fb823e / 0x80000000 = 7.02%
; CHECK: edge entry -> case_e probability is 0x08fb823e / 0x80000000 = 7.02%
; CHECK: edge entry -> case_c probability is 0x71c71c71 / 0x80000000 = 88.89% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x071c71c7 / 0x80000000 = 5.56%
; CHECK: edge entry -> case_e probability is 0x071c71c7 / 0x80000000 = 5.56%
case_a:
unreachable