[llvm-libtool-darwin] Refactor Slice and writeUniversalBinary

Refactoring `Slice` class and function `createUniversalBinary` from
`llvm-lipo` into  MachOUniversalWriter. This refactoring is necessary so
as to use the refactored code for creating universal binaries under
llvm-libtool-darwin.

Reviewed by alexshap, smeenai

Differential Revision: https://reviews.llvm.org/D84662
This commit is contained in:
Sameer Arora 2020-07-23 16:26:42 -07:00
parent 8ad7694f28
commit fccf62295c
4 changed files with 343 additions and 236 deletions

View File

@ -0,0 +1,84 @@
//===- MachOUniversalWriter.h - MachO universal binary writer----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Declares the Slice class and writeUniversalBinary function for writing a
// MachO universal binary file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_MACHOUNIVERSALWRITER_H
#define LLVM_OBJECT_MACHOUNIVERSALWRITER_H
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/MachO.h"
namespace llvm {
namespace object {
class Slice {
const Binary *B;
uint32_t CPUType;
uint32_t CPUSubType;
std::string ArchName;
// P2Alignment field stores slice alignment values from universal
// binaries. This is also needed to order the slices so the total
// file size can be calculated before creating the output buffer.
uint32_t P2Alignment;
public:
explicit Slice(const MachOObjectFile &O);
Slice(const MachOObjectFile &O, uint32_t Align);
static Expected<Slice> create(const Archive *A);
void setP2Alignment(uint32_t Align) { P2Alignment = Align; }
const Binary *getBinary() const { return B; }
uint32_t getCPUType() const { return CPUType; }
uint32_t getCPUSubType() const { return CPUSubType; }
uint32_t getP2Alignment() const { return P2Alignment; }
uint64_t getCPUID() const {
return static_cast<uint64_t>(CPUType) << 32 | CPUSubType;
}
std::string getArchString() const {
if (!ArchName.empty())
return ArchName;
return ("unknown(" + Twine(CPUType) + "," +
Twine(CPUSubType & ~MachO::CPU_SUBTYPE_MASK) + ")")
.str();
}
friend bool operator<(const Slice &Lhs, const Slice &Rhs) {
if (Lhs.CPUType == Rhs.CPUType)
return Lhs.CPUSubType < Rhs.CPUSubType;
// force arm64-family to follow after all other slices for
// compatibility with cctools lipo
if (Lhs.CPUType == MachO::CPU_TYPE_ARM64)
return false;
if (Rhs.CPUType == MachO::CPU_TYPE_ARM64)
return true;
// Sort by alignment to minimize file size
return Lhs.P2Alignment < Rhs.P2Alignment;
}
};
Error writeUniversalBinary(ArrayRef<Slice> Slices, StringRef OutputFileName);
} // end namespace object
} // end namespace llvm
#endif // LLVM_OBJECT_MACHOUNIVERSALWRITER_H

View File

@ -23,6 +23,7 @@ add_llvm_component_library(LLVMObject
SymbolSize.cpp
TapiFile.cpp
TapiUniversal.cpp
MachOUniversalWriter.cpp
WasmObjectFile.cpp
WindowsMachineFlag.cpp
WindowsResource.cpp

View File

@ -0,0 +1,220 @@
//===- MachOUniversalWriter.cpp - MachO universal binary writer---*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the Slice class and writeUniversalBinary function for writing a MachO
// universal binary file.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/MachOUniversalWriter.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/FileOutputBuffer.h"
using namespace llvm;
using namespace object;
// For compatibility with cctools lipo, a file's alignment is calculated as the
// minimum aligment of all segments. For object files, the file's alignment is
// the maximum alignment of its sections.
static uint32_t calculateFileAlignment(const MachOObjectFile &O) {
uint32_t P2CurrentAlignment;
uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
const bool Is64Bit = O.is64Bit();
for (const auto &LC : O.load_commands()) {
if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
continue;
if (O.getHeader().filetype == MachO::MH_OBJECT) {
unsigned NumberOfSections =
(Is64Bit ? O.getSegment64LoadCommand(LC).nsects
: O.getSegmentLoadCommand(LC).nsects);
P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
P2CurrentAlignment = std::max(P2CurrentAlignment,
(Is64Bit ? O.getSection64(LC, SI).align
: O.getSection(LC, SI).align));
}
} else {
P2CurrentAlignment =
countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
: O.getSegmentLoadCommand(LC).vmaddr);
}
P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
}
// return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
return std::max(
static_cast<uint32_t>(2),
std::min(P2MinAlignment, static_cast<uint32_t>(
MachOUniversalBinary::MaxSectionAlignment)));
}
static uint32_t calculateAlignment(const MachOObjectFile &ObjectFile) {
switch (ObjectFile.getHeader().cputype) {
case MachO::CPU_TYPE_I386:
case MachO::CPU_TYPE_X86_64:
case MachO::CPU_TYPE_POWERPC:
case MachO::CPU_TYPE_POWERPC64:
return 12; // log2 value of page size(4k) for x86 and PPC
case MachO::CPU_TYPE_ARM:
case MachO::CPU_TYPE_ARM64:
case MachO::CPU_TYPE_ARM64_32:
return 14; // log2 value of page size(16k) for Darwin ARM
default:
return calculateFileAlignment(ObjectFile);
}
}
Slice::Slice(const MachOObjectFile &O, uint32_t Align)
: B(&O), CPUType(O.getHeader().cputype),
CPUSubType(O.getHeader().cpusubtype),
ArchName(std::string(O.getArchTriple().getArchName())),
P2Alignment(Align) {}
Slice::Slice(const MachOObjectFile &O) : Slice(O, calculateAlignment(O)) {}
Expected<Slice> Slice::create(const Archive *A) {
Error Err = Error::success();
std::unique_ptr<MachOObjectFile> FO = nullptr;
for (const Archive::Child &Child : A->children(Err)) {
Expected<std::unique_ptr<Binary>> ChildOrErr = Child.getAsBinary();
if (!ChildOrErr)
return createFileError(A->getFileName(), ChildOrErr.takeError());
Binary *Bin = ChildOrErr.get().get();
if (Bin->isMachOUniversalBinary())
return createStringError(std::errc::invalid_argument,
("archive member " + Bin->getFileName() +
" is a fat file (not allowed in an archive)")
.str()
.c_str());
if (!Bin->isMachO())
return createStringError(
std::errc::invalid_argument,
("archive member " + Bin->getFileName() +
" is not a MachO file (not allowed in an archive)")
.str()
.c_str());
MachOObjectFile *O = cast<MachOObjectFile>(Bin);
if (FO && std::tie(FO->getHeader().cputype, FO->getHeader().cpusubtype) !=
std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) {
return createStringError(
std::errc::invalid_argument,
("archive member " + O->getFileName() + " cputype (" +
Twine(O->getHeader().cputype) + ") and cpusubtype(" +
Twine(O->getHeader().cpusubtype) +
") does not match previous archive members cputype (" +
Twine(FO->getHeader().cputype) + ") and cpusubtype(" +
Twine(FO->getHeader().cpusubtype) + ") (all members must match) " +
FO->getFileName())
.str()
.c_str());
}
if (!FO) {
ChildOrErr.get().release();
FO.reset(O);
}
}
if (Err)
return createFileError(A->getFileName(), std::move(Err));
if (!FO)
return createStringError(
std::errc::invalid_argument,
("empty archive with no architecture specification: " +
A->getFileName() + " (can't determine architecture for it)")
.str()
.c_str());
Slice ArchiveSlice = Slice(*(FO.get()), FO->is64Bit() ? 3 : 2);
ArchiveSlice.B = A;
return ArchiveSlice;
}
static Expected<SmallVector<MachO::fat_arch, 2>>
buildFatArchList(ArrayRef<Slice> Slices) {
SmallVector<MachO::fat_arch, 2> FatArchList;
uint64_t Offset =
sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch);
for (const auto &S : Slices) {
Offset = alignTo(Offset, 1ull << S.getP2Alignment());
if (Offset > UINT32_MAX)
return createStringError(
std::errc::invalid_argument,
("fat file too large to be created because the offset "
"field in struct fat_arch is only 32-bits and the offset " +
Twine(Offset) + " for " + S.getBinary()->getFileName() +
" for architecture " + S.getArchString() + "exceeds that.")
.str()
.c_str());
MachO::fat_arch FatArch;
FatArch.cputype = S.getCPUType();
FatArch.cpusubtype = S.getCPUSubType();
FatArch.offset = Offset;
FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize();
FatArch.align = S.getP2Alignment();
Offset += FatArch.size;
FatArchList.push_back(FatArch);
}
return FatArchList;
}
Error object::writeUniversalBinary(ArrayRef<Slice> Slices,
StringRef OutputFileName) {
MachO::fat_header FatHeader;
FatHeader.magic = MachO::FAT_MAGIC;
FatHeader.nfat_arch = Slices.size();
Expected<SmallVector<MachO::fat_arch, 2>> FatArchListOrErr =
buildFatArchList(Slices);
if (!FatArchListOrErr)
return FatArchListOrErr.takeError();
SmallVector<MachO::fat_arch, 2> FatArchList = *FatArchListOrErr;
const bool IsExecutable = any_of(Slices, [](Slice S) {
return sys::fs::can_execute(S.getBinary()->getFileName());
});
const uint64_t OutputFileSize =
static_cast<uint64_t>(FatArchList.back().offset) +
FatArchList.back().size;
Expected<std::unique_ptr<FileOutputBuffer>> OutFileOrError =
FileOutputBuffer::create(OutputFileName, OutputFileSize,
IsExecutable ? FileOutputBuffer::F_executable
: 0);
if (!OutFileOrError)
return createFileError(OutputFileName, OutFileOrError.takeError());
std::unique_ptr<FileOutputBuffer> OutFile = std::move(OutFileOrError.get());
std::memset(OutFile->getBufferStart(), 0, OutputFileSize);
if (sys::IsLittleEndianHost)
MachO::swapStruct(FatHeader);
std::memcpy(OutFile->getBufferStart(), &FatHeader, sizeof(MachO::fat_header));
for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef();
std::copy(BufferRef.getBufferStart(), BufferRef.getBufferEnd(),
OutFile->getBufferStart() + FatArchList[Index].offset);
}
// FatArchs written after Slices in order to reduce the number of swaps for
// the LittleEndian case
if (sys::IsLittleEndianHost)
for (MachO::fat_arch &FA : FatArchList)
MachO::swapStruct(FA);
std::memcpy(OutFile->getBufferStart() + sizeof(MachO::fat_header),
FatArchList.begin(),
sizeof(MachO::fat_arch) * FatArchList.size());
if (Error E = OutFile->commit())
return createFileError(OutputFileName, std::move(E));
return Error::success();
}

View File

@ -15,6 +15,7 @@
#include "llvm/Object/Binary.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/MachOUniversalWriter.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
@ -36,6 +37,15 @@ LLVM_ATTRIBUTE_NORETURN static void reportError(Twine Message) {
exit(EXIT_FAILURE);
}
LLVM_ATTRIBUTE_NORETURN static void reportError(Error E) {
assert(E);
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(std::move(E), OS);
OS.flush();
reportError(Buf);
}
LLVM_ATTRIBUTE_NORETURN static void reportError(StringRef File, Error E) {
assert(E);
std::string Buf;
@ -103,159 +113,13 @@ struct Config {
LipoAction ActionToPerform;
};
// For compatibility with cctools lipo, a file's alignment is calculated as the
// minimum aligment of all segments. For object files, the file's alignment is
// the maximum alignment of its sections.
static uint32_t calculateFileAlignment(const MachOObjectFile &O) {
uint32_t P2CurrentAlignment;
uint32_t P2MinAlignment = MachOUniversalBinary::MaxSectionAlignment;
const bool Is64Bit = O.is64Bit();
for (const auto &LC : O.load_commands()) {
if (LC.C.cmd != (Is64Bit ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT))
continue;
if (O.getHeader().filetype == MachO::MH_OBJECT) {
unsigned NumberOfSections =
(Is64Bit ? O.getSegment64LoadCommand(LC).nsects
: O.getSegmentLoadCommand(LC).nsects);
P2CurrentAlignment = NumberOfSections ? 2 : P2MinAlignment;
for (unsigned SI = 0; SI < NumberOfSections; ++SI) {
P2CurrentAlignment = std::max(P2CurrentAlignment,
(Is64Bit ? O.getSection64(LC, SI).align
: O.getSection(LC, SI).align));
}
} else {
P2CurrentAlignment =
countTrailingZeros(Is64Bit ? O.getSegment64LoadCommand(LC).vmaddr
: O.getSegmentLoadCommand(LC).vmaddr);
}
P2MinAlignment = std::min(P2MinAlignment, P2CurrentAlignment);
}
// return a value >= 4 byte aligned, and less than MachO MaxSectionAlignment
return std::max(
static_cast<uint32_t>(2),
std::min(P2MinAlignment, static_cast<uint32_t>(
MachOUniversalBinary::MaxSectionAlignment)));
static Slice archiveSlice(const Archive *A, StringRef File) {
Expected<Slice> ArchiveOrSlice = Slice::create(A);
if (!ArchiveOrSlice)
reportError(File, ArchiveOrSlice.takeError());
return *ArchiveOrSlice;
}
static uint32_t calculateAlignment(const MachOObjectFile *ObjectFile) {
switch (ObjectFile->getHeader().cputype) {
case MachO::CPU_TYPE_I386:
case MachO::CPU_TYPE_X86_64:
case MachO::CPU_TYPE_POWERPC:
case MachO::CPU_TYPE_POWERPC64:
return 12; // log2 value of page size(4k) for x86 and PPC
case MachO::CPU_TYPE_ARM:
case MachO::CPU_TYPE_ARM64:
case MachO::CPU_TYPE_ARM64_32:
return 14; // log2 value of page size(16k) for Darwin ARM
default:
return calculateFileAlignment(*ObjectFile);
}
}
class Slice {
const Binary *B;
uint32_t CPUType;
uint32_t CPUSubType;
std::string ArchName;
// P2Alignment field stores slice alignment values from universal
// binaries. This is also needed to order the slices so the total
// file size can be calculated before creating the output buffer.
uint32_t P2Alignment;
public:
Slice(const MachOObjectFile *O, uint32_t Align)
: B(O), CPUType(O->getHeader().cputype),
CPUSubType(O->getHeader().cpusubtype),
ArchName(std::string(O->getArchTriple().getArchName())),
P2Alignment(Align) {}
explicit Slice(const MachOObjectFile *O) : Slice(O, calculateAlignment(O)){};
explicit Slice(const Archive *A) : B(A) {
Error Err = Error::success();
std::unique_ptr<MachOObjectFile> FO = nullptr;
for (const Archive::Child &Child : A->children(Err)) {
Expected<std::unique_ptr<Binary>> ChildOrErr = Child.getAsBinary();
if (!ChildOrErr)
reportError(A->getFileName(), ChildOrErr.takeError());
Binary *Bin = ChildOrErr.get().get();
if (Bin->isMachOUniversalBinary())
reportError(("archive member " + Bin->getFileName() +
" is a fat file (not allowed in an archive)")
.str());
if (!Bin->isMachO())
reportError(("archive member " + Bin->getFileName() +
" is not a MachO file (not allowed in an archive)"));
MachOObjectFile *O = cast<MachOObjectFile>(Bin);
if (FO &&
std::tie(FO->getHeader().cputype, FO->getHeader().cpusubtype) !=
std::tie(O->getHeader().cputype, O->getHeader().cpusubtype)) {
reportError(("archive member " + O->getFileName() + " cputype (" +
Twine(O->getHeader().cputype) + ") and cpusubtype(" +
Twine(O->getHeader().cpusubtype) +
") does not match previous archive members cputype (" +
Twine(FO->getHeader().cputype) + ") and cpusubtype(" +
Twine(FO->getHeader().cpusubtype) +
") (all members must match) " + FO->getFileName())
.str());
}
if (!FO) {
ChildOrErr.get().release();
FO.reset(O);
}
}
if (Err)
reportError(A->getFileName(), std::move(Err));
if (!FO)
reportError(("empty archive with no architecture specification: " +
A->getFileName() + " (can't determine architecture for it)")
.str());
CPUType = FO->getHeader().cputype;
CPUSubType = FO->getHeader().cpusubtype;
ArchName = std::string(FO->getArchTriple().getArchName());
// Replicate the behavior of cctools lipo.
P2Alignment = FO->is64Bit() ? 3 : 2;
}
void setP2Alignment(uint32_t Align) { P2Alignment = Align; }
const Binary *getBinary() const { return B; }
uint32_t getCPUType() const { return CPUType; }
uint32_t getCPUSubType() const { return CPUSubType; }
uint32_t getP2Alignment() const { return P2Alignment; }
uint64_t getCPUID() const {
return static_cast<uint64_t>(CPUType) << 32 | CPUSubType;
}
std::string getArchString() const {
if (!ArchName.empty())
return ArchName;
return ("unknown(" + Twine(CPUType) + "," +
Twine(CPUSubType & ~MachO::CPU_SUBTYPE_MASK) + ")")
.str();
}
friend bool operator<(const Slice &Lhs, const Slice &Rhs) {
if (Lhs.CPUType == Rhs.CPUType)
return Lhs.CPUSubType < Rhs.CPUSubType;
// force arm64-family to follow after all other slices for
// compatibility with cctools lipo
if (Lhs.CPUType == MachO::CPU_TYPE_ARM64)
return false;
if (Rhs.CPUType == MachO::CPU_TYPE_ARM64)
return true;
// Sort by alignment to minimize file size
return Lhs.P2Alignment < Rhs.P2Alignment;
}
};
} // end namespace
static void validateArchitectureName(StringRef ArchitectureName) {
@ -450,8 +314,8 @@ readInputBinaries(ArrayRef<InputFile> InputFiles) {
if (!B->isArchive() && !B->isMachO() && !B->isMachOUniversalBinary())
reportError("File " + IF.FileName + " has unsupported binary format");
if (IF.ArchType && (B->isMachO() || B->isArchive())) {
const auto S = B->isMachO() ? Slice(cast<MachOObjectFile>(B))
: Slice(cast<Archive>(B));
const auto S = B->isMachO() ? Slice(*cast<MachOObjectFile>(B))
: archiveSlice(cast<Archive>(B), IF.FileName);
const auto SpecifiedCPUType = MachO::getCPUTypeFromArchitecture(
MachO::getArchitectureFromName(
Triple(*IF.ArchType).getArchName()))
@ -506,13 +370,15 @@ static void printBinaryArchs(const Binary *Binary, raw_ostream &OS) {
Expected<std::unique_ptr<MachOObjectFile>> MachOObjOrError =
O.getAsObjectFile();
if (MachOObjOrError) {
OS << Slice(MachOObjOrError->get()).getArchString() << " ";
OS << Slice(*(MachOObjOrError->get())).getArchString() << " ";
continue;
}
Expected<std::unique_ptr<Archive>> ArchiveOrError = O.getAsArchive();
if (ArchiveOrError) {
consumeError(MachOObjOrError.takeError());
OS << Slice(ArchiveOrError->get()).getArchString() << " ";
OS << archiveSlice(ArchiveOrError->get(), Binary->getFileName())
.getArchString()
<< " ";
continue;
}
consumeError(ArchiveOrError.takeError());
@ -521,7 +387,7 @@ static void printBinaryArchs(const Binary *Binary, raw_ostream &OS) {
OS << "\n";
return;
}
OS << Slice(cast<MachOObjectFile>(Binary)).getArchString() << " \n";
OS << Slice(*cast<MachOObjectFile>(Binary)).getArchString() << " \n";
}
LLVM_ATTRIBUTE_NORETURN
@ -646,12 +512,12 @@ static SmallVector<Slice, 2> buildSlices(
if (!BinaryOrError)
reportError(InputBinary->getFileName(), BinaryOrError.takeError());
ExtractedObjects.push_back(std::move(BinaryOrError.get()));
Slices.emplace_back(ExtractedObjects.back().get(), O.getAlign());
Slices.emplace_back(*(ExtractedObjects.back().get()), O.getAlign());
}
} else if (auto O = dyn_cast<MachOObjectFile>(InputBinary)) {
Slices.emplace_back(O);
Slices.emplace_back(*O);
} else if (auto A = dyn_cast<Archive>(InputBinary)) {
Slices.emplace_back(A);
Slices.push_back(archiveSlice(A, InputBinary->getFileName()));
} else {
llvm_unreachable("Unexpected binary format");
}
@ -660,79 +526,6 @@ static SmallVector<Slice, 2> buildSlices(
return Slices;
}
static SmallVector<MachO::fat_arch, 2>
buildFatArchList(ArrayRef<Slice> Slices) {
SmallVector<MachO::fat_arch, 2> FatArchList;
uint64_t Offset =
sizeof(MachO::fat_header) + Slices.size() * sizeof(MachO::fat_arch);
for (const auto &S : Slices) {
Offset = alignTo(Offset, 1ull << S.getP2Alignment());
if (Offset > UINT32_MAX)
reportError("fat file too large to be created because the offset "
"field in struct fat_arch is only 32-bits and the offset " +
Twine(Offset) + " for " + S.getBinary()->getFileName() +
" for architecture " + S.getArchString() + "exceeds that.");
MachO::fat_arch FatArch;
FatArch.cputype = S.getCPUType();
FatArch.cpusubtype = S.getCPUSubType();
FatArch.offset = Offset;
FatArch.size = S.getBinary()->getMemoryBufferRef().getBufferSize();
FatArch.align = S.getP2Alignment();
Offset += FatArch.size;
FatArchList.push_back(FatArch);
}
return FatArchList;
}
static void createUniversalBinary(SmallVectorImpl<Slice> &Slices,
StringRef OutputFileName) {
MachO::fat_header FatHeader;
FatHeader.magic = MachO::FAT_MAGIC;
FatHeader.nfat_arch = Slices.size();
stable_sort(Slices);
SmallVector<MachO::fat_arch, 2> FatArchList = buildFatArchList(Slices);
const bool IsExecutable = any_of(Slices, [](Slice S) {
return sys::fs::can_execute(S.getBinary()->getFileName());
});
const uint64_t OutputFileSize =
static_cast<uint64_t>(FatArchList.back().offset) +
FatArchList.back().size;
Expected<std::unique_ptr<FileOutputBuffer>> OutFileOrError =
FileOutputBuffer::create(OutputFileName, OutputFileSize,
IsExecutable ? FileOutputBuffer::F_executable
: 0);
if (!OutFileOrError)
reportError(OutputFileName, OutFileOrError.takeError());
std::unique_ptr<FileOutputBuffer> OutFile = std::move(OutFileOrError.get());
std::memset(OutFile->getBufferStart(), 0, OutputFileSize);
if (sys::IsLittleEndianHost)
MachO::swapStruct(FatHeader);
std::memcpy(OutFile->getBufferStart(), &FatHeader, sizeof(MachO::fat_header));
for (size_t Index = 0, Size = Slices.size(); Index < Size; ++Index) {
MemoryBufferRef BufferRef = Slices[Index].getBinary()->getMemoryBufferRef();
std::copy(BufferRef.getBufferStart(), BufferRef.getBufferEnd(),
OutFile->getBufferStart() + FatArchList[Index].offset);
}
// FatArchs written after Slices in order to reduce the number of swaps for
// the LittleEndian case
if (sys::IsLittleEndianHost)
for (MachO::fat_arch &FA : FatArchList)
MachO::swapStruct(FA);
std::memcpy(OutFile->getBufferStart() + sizeof(MachO::fat_header),
FatArchList.begin(),
sizeof(MachO::fat_arch) * FatArchList.size());
if (Error E = OutFile->commit())
reportError(OutputFileName, std::move(E));
}
LLVM_ATTRIBUTE_NORETURN
static void createUniversalBinary(ArrayRef<OwningBinary<Binary>> InputBinaries,
const StringMap<const uint32_t> &Alignments,
@ -745,7 +538,10 @@ static void createUniversalBinary(ArrayRef<OwningBinary<Binary>> InputBinaries,
buildSlices(InputBinaries, Alignments, ExtractedObjects);
checkArchDuplicates(Slices);
checkUnusedAlignments(Slices, Alignments);
createUniversalBinary(Slices, OutputFileName);
llvm::stable_sort(Slices);
if (Error E = writeUniversalBinary(Slices, OutputFileName))
reportError(std::move(E));
exit(EXIT_SUCCESS);
}
@ -776,7 +572,10 @@ static void extractSlice(ArrayRef<OwningBinary<Binary>> InputBinaries,
reportError(
"fat input file " + InputBinaries.front().getBinary()->getFileName() +
" does not contain the specified architecture " + ArchType);
createUniversalBinary(Slices, OutputFileName);
llvm::stable_sort(Slices);
if (Error E = writeUniversalBinary(Slices, OutputFileName))
reportError(std::move(E));
exit(EXIT_SUCCESS);
}
@ -792,7 +591,7 @@ buildReplacementSlices(ArrayRef<OwningBinary<Binary>> ReplacementBinaries,
if (!O)
reportError("replacement file: " + ReplacementBinary->getFileName() +
" is a fat file (must be a thin file)");
Slice S(O);
Slice S(*O);
auto Entry = Slices.try_emplace(S.getArchString(), S);
if (!Entry.second)
reportError("-replace " + S.getArchString() +
@ -843,7 +642,10 @@ static void replaceSlices(ArrayRef<OwningBinary<Binary>> InputBinaries,
" does not contain that architecture");
checkUnusedAlignments(Slices, Alignments);
createUniversalBinary(Slices, OutputFileName);
llvm::stable_sort(Slices);
if (Error E = writeUniversalBinary(Slices, OutputFileName))
reportError(std::move(E));
exit(EXIT_SUCCESS);
}