This patch is a revert of e08f205f5c2c. In that patch, DW_TAG_subprograms
were permitted to be referenced across CU boundaries, to improve stack
trace construction using call site information. Unfortunately, as
documented in PR48790, the way that subprograms are "owned" by dwarf units
is sufficiently complicated that subprograms end up in unexpected units,
invalidating cross-unit references.
There's no obvious way to easily fix this, and several attempts have
failed. Revert this to ensure correct DWARF is always emitted.
Three tests change in addition to the reversion, but they're all very
light alterations.
Differential Revision: https://reviews.llvm.org/D107076
(cherry picked from commit d4ce9e463d51b18547dbd181884046abf77c5c91)
Signed-off-by: Jeremy Morse <jeremy.morse@sony.com>
Conflicts:
llvm/test/DebugInfo/X86/convert-loclist.ll
Add a new wrapper function addAttribute() for Die.addValue() function,
so we can do some attributes control in one single interface.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D101125
Negative numbers are represented using DW_OP_consts along with signed representation
of the number as the argument.
Test case IR is generated using Fortran front-end.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99273
For locally scoped lambdas like this there's no particular benefit to
explicitly listing captures - or avoiding capturing this. Switch to [&]
and make it all easier to maintain.
(& driveby change std::function to llvm::function_ref)
This patch allows DBG_VALUE_LIST instructions to be emitted to DWARF with valid
DW_AT_locations. This change mainly affects DbgEntityHistoryCalculator, which
now tracks multiple registers per value, and DwarfDebug+DwarfExpression, which
can now emit multiple machine locations as part of a DWARF expression.
Differential Revision: https://reviews.llvm.org/D83495
Experimental, using non-existent DWARF support to use an expr for the
location involving an addr_index (to compute address + offset so
addresses can be reused in more places).
The global variable debug info had to be deferred until the end of the
module (so bss variables would all be emitted first - so their labels
would have the relevant section). Non-bss variables seemed to not have
their label assigned to a section even at the end of the module, so I
didn't know what to do there.
Also, the hashing code is broken - doesn't know how to hash these
expressions (& isn't hashing anything inside subprograms, which seems
problematic), so for test purposes this change just skips the hash
computation. (GCC's actually overly sensitive in its hash function, it
seems - I'm forgetting the specific case right now - anyway, we might
want to just use the frontend-known file hash and give up on optimistic
.dwo/.dwp reuse)
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
When using dbg.declare, the debug-info is generated from a list of
locals rather than through DBG_VALUE instructions in the MIR.
This patch is different from D90020 because it emits the DWARF
location expressions from that list of locals directly.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D90044
Given the ability provided by DWARFv5 rnglists to reuse addresses in the
address pool, it can be advantageous to object file size to use range
encodings even when the range could be described by a direct low/high
pc.
Add a flag to allow enabling this in DWARFv5 for the purpose of
experimentation/data gathering.
It might be that it makes sense to enable this functionality by default
for DWARFv5 + Split DWARF at least, where the tradeoff/desire to
optimize for .o file size is more explicit and .o bytes are higher
priority than .dwo bytes.
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
Initial support for dwarf fission sections (-gsplit-dwarf) on wasm.
The most interesting change is support for writing 2 files (.o and .dwo) in the
wasm object writer. My approach moves object-writing logic into its own function
and calls it twice, swapping out the endian::Writer (W) in between calls.
It also splits the import-preparation step into its own function (and skips it when writing a dwo).
Differential Revision: https://reviews.llvm.org/D85685
The patch uses a common method to determine the appropriate form for
the value of the attribute.
Differential Revision: https://reviews.llvm.org/D87016
DIELabel can emit only 32- or 64-bit values, while it was created in
some places with DW_FORM_udata, which implies emitting uleb128.
Nevertheless, these places also expected to emit U32 or U64, but just
used a misleading DWARF form. The patch updates those places to use more
appropriate DWARF forms and restricts DIELabel::SizeOf() to accept only
forms that are actually used in the LLVM codebase.
Differential Revision: https://reviews.llvm.org/D84094
Emit DWARF 5 call-site symbols even though DWARF 4 is set,
only in the case of LLDB tuning.
This patch addresses PR46643.
Differential Revision: https://reviews.llvm.org/D83463
Summary:
This support is needed for the Fortran array variables with pointer/allocatable
attribute. This support enables debugger to identify the status of variable
whether that is currently allocated/associated.
for pointer array (before allocation/association)
without DW_AT_associated
(gdb) pt ptr
type = integer (140737345375288:140737354129776)
(gdb) p ptr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_associated
(gdb) pt ptr
type = integer (:)
(gdb) p ptr
$1 = <not associated>
for allocatable array (before allocation)
without DW_AT_allocated
(gdb) pt arr
type = integer (140737345375288:140737354129776)
(gdb) p arr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_allocated
(gdb) pt arr
type = integer, allocatable (:)
(gdb) p arr
$1 = <not allocated>
Testing
- unit test cases added
- check-llvm
- check-debuginfo
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83544
For now, DIEExpr is used only in two places:
1) in the debug info library unit test suite to emit
a DW_AT_str_offsets_base attribute with the DW_FORM_sec_offset
form, see dwarfgen::DIE::addStrOffsetsBaseAttribute();
2) in DwarfCompileUnit::addLocationAttribute() to generate the location
attribute for a TLS variable.
The later case used an incorrect DWARF form of DW_FORM_udata, which
implies storing an uleb128 value, not a 4/8 byte constant. The generated
result was as expected because DIEExpr::SizeOf() did not handle the used
form, but returned the size of the code pointer by default.
The patch fixes the issue by using more appropriate DWARF forms for
the problematic case and making DIEExpr::SizeOf() more straightforward.
Differential Revision: https://reviews.llvm.org/D83958
This patch uses ranges for debug information when a function contains basic block sections rather than using [lowpc, highpc]. This is also the first in a series of patches for debug info and does not contain the support for linker relaxation. That will be done as a follow up patch.
Differential Revision: https://reviews.llvm.org/D78851
Commit d77ae1552fc2 ("[DebugInfo] Support to emit debugInfo
for extern variables") added support to emit debuginfo
for extern variables. Currently, only BPF target enables to
emit debuginfo for extern variables.
But if the extern variable has "void" type, the compilation will
fail.
-bash-4.4$ cat t.c
extern void bla;
void *test() {
void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
missing global variable type
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
isLocal: false, isDefinition: false)
...
fatal error: error in backend: Broken module found, compilation aborted!
PLEASE submit a bug report to https://bugs.llvm.org/ and include the crash backtrace,
preprocessed source, and associated run script.
Stack dump:
...
The IR requires a DIGlobalVariable must have a valid type and the
"void" type does not generate any type, hence the above fatal error.
Note that if the extern variable is defined as "const void", the
compilation will succeed.
-bash-4.4$ cat t.c
extern const void bla;
const void *test() {
const void *x = &bla;
return x;
}
-bash-4.4$ clang -target bpf -g -O2 -S t.c
-bash-4.4$ cat t.ll
...
!1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1,
type: !6, isLocal: false, isDefinition: false)
!6 = !DIDerivedType(tag: DW_TAG_const_type, baseType: null)
...
Since currently, "const void extern_var" is supported by the
debug info, it is natural that "void extern_var" should also
be supported. This patch disabled assertion of "void extern_var"
in IR verifier and add proper guarding when emiting potential
null debug info type to dwarf types.
Differential Revision: https://reviews.llvm.org/D81131
This patch upgrades DISubrange to support fortran requirements.
Summary:
Below are the updates/addition of fields.
lowerBound - Now accepts signed integer or DIVariable or DIExpression,
earlier it accepted only signed integer.
upperBound - This field is now added and accepts signed interger or
DIVariable or DIExpression.
stride - This field is now added and accepts signed interger or
DIVariable or DIExpression.
This is required to describe bounds of array which are known at runtime.
Testing:
unit test cases added (hand-written)
check clang
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D80197
Summary:
A struct argument can be passed-by-value to a callee via a pointer to a
temporary stack copy. Add support for emitting an entry value DBG_VALUE
when an indirect parameter DBG_VALUE becomes unavailable. This is done
by omitting DW_OP_stack_value from the entry value expression, to make
the expression describe the location of an object.
rdar://63373691
Reviewers: djtodoro, aprantl, dstenb
Subscribers: hiraditya, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D80345
This patch adds support for DWARF attribute DW_AT_data_location.
Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79592
Previously line table symbol was represented as `DIE::value_iterator`
inside `DwarfCompileUnit` and subsequent function `intStmtList`
was used to create a local `MCSymbol` to initialize it.
This patch removes `DIE::value_iterator` from `DwarfCompileUnit`
and intoduce `MCSymbol` for representing this units symbol for
`debug_line` section. As a result `applyStmtList` is also modified
to utilize this. Further more a helper function `getLineTableStartSym`
is also introduced to get this symbol, this would be used by clients
which need to access this line table, i.e `debug_macro`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77489
Record the address of a tail-calling branch instruction within its call
site entry using DW_AT_call_pc. This allows a debugger to determine the
address to use when creating aritificial frames.
This creates an extra attribute + relocation at tail call sites, which
constitute 3-5% of all call sites in xnu/clang respectively.
rdar://60307600
Differential Revision: https://reviews.llvm.org/D76336
This is a revert-of-revert (i.e. this reverts commit 802bec89, which
itself reverted fa4701e1 and 79daafc9) with a fix folded in. The problem
was that call site tags weren't emitted properly when LTO was enabled
along with split-dwarf. This required a minor fix. I've added a reduced
test case in test/DebugInfo/X86/fission-call-site.ll.
Original commit message:
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update #1:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Update #2:
Fold in a fix for call site tag emission in the split-dwarf + LTO case.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415, rdar://58888440
Differential Revision: https://reviews.llvm.org/D70350
... as well as:
Revert "[DWARF] Defer creating declaration DIEs until we prepare call site info"
This reverts commit fa4701e1979553c2df61698ac1ac212627630442.
This reverts commit 79daafc90308787b52a5d3a7586e82acd5e374b3.
There have been reports of this assert getting hit:
CalleeDIE && "Could not find DIE for call site entry origin
The low_pc is analog to the DW_AT_call_return_pc, since it describes
the return address after the call. The DW_AT_call_pc is the address
of the call instruction, and we don't use it at the moment.
Differential Revision: https://reviews.llvm.org/D73173
This makes the SectionLabel handling more resilient - specifically for
future PROPELLER work which will have more CU ranges (rather than just
one per function).
Ultimately it might be nice to make this more general/resilient to
arbitrary labels (rather than relying on the labels being created for CU
ranges & then being reused by ranges, loclists, and possibly other
addresses). It's possible that other (non-rnglist/loclist) uses of
addresses will need the addresses to be in SectionLabels earlier (eg:
move the CU.addRange to be done on function begin, rather than function
end, so during function emission they are already populated for other
use).
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
This is a reland of rG3a05c3969c18 with fixes for the expensive-checks
and Windows builds
Differential Revision: https://reviews.llvm.org/D71681
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
Differential Revision: https://reviews.llvm.org/D71681
This reverts D53469, which changed llvm's DWARF emission to emit
DW_AT_call_return_pc as a function-local offset. Such an encoding is not
compatible with post-link block re-ordering tools and isn't standards-
compliant.
In addition to reverting back to the original DW_AT_call_return_pc
encoding, teach lldb how to fix up DW_AT_call_return_pc when the address
comes from an object file pointed-to by a debug map. While doing this I
noticed that lldb's support for tail calls that cross a DSO/object file
boundary wasn't covered, so I added tests for that. This latter case
exercises the newly added return PC fixup.
The dsymutil changes in this patch were originally included in D49887:
the associated test should be sufficient to test DW_AT_call_return_pc
encoding purely on the llvm side.
Differential Revision: https://reviews.llvm.org/D72489
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415
Differential Revision: https://reviews.llvm.org/D70350
Move these data structures closer together so their emission code can
eventually share more of its implementation.
Was an egregious bug (completely untested, evidently) where I hadn't
inverted a DWARFv5 test as needed, so it was doing the exact opposite of
what was required & thus tried to emit a DWARFv5 range list header in
DWARFv4.
Reapply 8e04896288d22ed8bef7ac367923374f96b753d6 which was
reverted in a8154e5e0c83d2f0f65f3b4fb1a0bc68785bd975.