Background:
CFGStackify's [[ 398f253400/llvm/lib/Target/WebAssembly/WebAssemblyCFGStackify.cpp (L1481-L1540) | fixEndsAtEndOfFunction ]] fixes block/loop/try's return
type when the end of function is unreachable and the function return
type is not void. So if a function returns i32 and `block`-`end` wraps the
whole function, i.e., the `block`'s `end` is the last instruction of the
function, the `block`'s return type should be i32 too:
```
block i32
...
end
end_function
```
If there are consecutive `end`s, this signature has to be propagate to
those blocks too, like:
```
block i32
...
block i32
...
end
end
end_function
```
This applies to `try`-`end` too:
```
try i32
...
catch
...
end
end_function
```
In case of `try`, we not only follow consecutive `end`s but also follow
`catch`, because for the type of the whole `try` to be i32, both `try`
and `catch` parts have to be i32:
```
try i32
...
block i32
...
end
catch
...
block i32
...
end
end
end_function
```
---
Previously we only handled consecutive `end`s or `end` before a `catch`.
But now we have `delegate`, which serves like `end` for
`try`-`delegate`. So we have to follow `delegate` too and mark its
corresponding `try` as i32 (the function's return type):
```
try i32
...
catch
...
try i32 ;; Here
...
delegate N
end
end_function
```
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D101036
This CL
1. Creates Utils/ directory under lib/Target/WebAssembly
2. Moves existing WebAssemblyUtilities.cpp|h into the Utils/ directory
3. Creates Utils/WebAssemblyTypeUtilities.cpp|h and put type
declarataions and type conversion functions scattered in various
places into this single place.
It has been suggested several times that it is not easy to share utility
functions between subdirectories (AsmParser, DIsassembler, MCTargetDesc,
...). Sometimes we ended up [[ https://reviews.llvm.org/D92840#2478863 | duplicating ]] the same function because of
this.
There are already other targets doing this: AArch64, AMDGPU, and ARM
have Utils/ subdirectory under their target directory.
This extracts the utility functions into a single directory Utils/ and
make them sharable among all passes in WebAssembly/ and its
subdirectories. Also I believe gathering all type-related conversion
functionalities into a single place makes it more usable. (Actually I
was working on another CL that uses various type conversion functions
scattered in multiple places, which became the motivation for this CL.)
Reviewed By: dschuff, aardappel
Differential Revision: https://reviews.llvm.org/D100995
This is a case D97178 tried to solve but missed. D97178 could not handle
the case when
multiple consecutive delegates are generated:
- Before:
```
block
br (a)
try
catch
end_try
end_block
<- (a)
```
- After
```
block
br (a)
try
...
try
try
catch
end_try
<- (a)
delegate
delegate
end_block
<- (b)
```
(The `br` should point to (b) now)
D97178 assumed `end_block` exists two BBs later than `end_try`, because
it assumed the order as `end_try` BB -> `delegate` BB -> `end_block` BB.
But it turned out there can be multiple `delegate`s in between. This
patch changes the logic so we just search from `end_try` BB until we
find `end_block`.
Fixes https://github.com/emscripten-core/emscripten/issues/13515.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13515#issuecomment-784711318.)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97569
This renames variable and method names in `WasmEHFuncInfo` class to be
simpler and clearer. For example, unwind destinations are EH pads by
definition so it doesn't necessarily need to be included in every method
name. Also I am planning to add the reverse mapping in a later CL,
something like `UnwindDestToSrc`, so this renaming will make meanings
clearer.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D97173
Updating `EHPadStack` with respect to `TRY` and `CATCH` instructions
have to be done after checking all other conditions, not before. Because
we did this before checking other conditions, when we encounter `TRY`
and we want to record the current mismatching range, we already have
popped up the entry from `EHPadStack`, which we need to access to record
the range.
The `baz` call in the added test needs try-delegate because the previous
TRY marker placement for `quux` was placed before `baz`, because `baz`'s
return value was stackified in RegStackify. If this wasn't stackified
this try-delegate is not strictly necessary, but at the moment it is not
easy to identify cases like this. I plan to transfer `nounwind`
attributes from the LLVM IR to prevent cases like this. The call in the
test does not have `unwind` attribute in order to test this bug, but in
many cases of this pattern the previous call has `nounwind` attribute.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D96711
Previously we assumed `rethrow`'s argument was always 0, but it turned
out `rethrow` follows the same rule with `br` or `delegate`:
https://github.com/WebAssembly/exception-handling/pull/137https://github.com/WebAssembly/exception-handling/issues/146#issuecomment-777349038
Currently `rethrow`s generated by our backend always rethrow the
exception caught by the innermost enclosing catch, so this adds a
function to compute that and replaces `rethrow`'s argument with its
computed result.
This also renames `EHPadStack` in `InstPrinter` to `TryStack`, because
in CFGStackify we use `EHPadStack` to mean the range between
`catch`~`end`, while in `InstPrinter` we used it to mean the range
between `try`~`catch`, so choosing different names would look clearer.
Doesn't contain any functional changes in `InstPrinter`.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D96595
I previously assumed `delegate`'s immediate argument computation
followed a different rule than that of branches, but we agreed to make
it the same
(https://github.com/WebAssembly/exception-handling/issues/146). This
removes the need for a separate `DelegateStack` in both CFGStackify and
InstPrinter.
When computing the immediate argument, we use a different function for
`delegate` computation because in MIR `DELEGATE`'s instruction's
destination is the destination catch BB or delegate BB, and when it is a
catch BB, we need an additional step of getting its corresponding `end`
marker.
Reviewed By: tlively, dschuff
Differential Revision: https://reviews.llvm.org/D96525
This fixes unwind destination mismatches caused by 'catch'es, which
occur when a foreign exception is not caught by the nearest `catch` and
the next outer `catch` is not the catch it should unwind to, or the next
unwind destination should be the caller instead. This kind of mismatches
didn't exist in the previous version of the spec, because in the
previous spec `catch` was effectively `catch_all`, catching all
exceptions.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D94049
This adds `delegate` instruction and use it to fix unwind destination
mismatches created by marker placement in CFGStackify.
There are two kinds of unwind destination mismatches:
- Mismatches caused by throwing instructions (here we call it "call
unwind mismatches", even though `throw` and `rethrow` can also cause
mismatches)
- Mismatches caused by `catch`es, in case a foreign exception is not
caught by the nearest `catch` and the next outer `catch` is not the
catch it should unwind to. This kind of mismatches didn't exist in the
previous version of the spec, because in the previous spec `catch` was
effectively `catch_all`, catching all exceptions.
This implements routines to fix the first kind of unwind mismatches,
which we call "call unwind mismatches". The second mismatch (catch
unwind mismatches) will be fixed in a later CL.
This also reenables all previously disabled tests in cfg-stackify-eh.ll
and updates FileCheck lines to match the new spec. Two tests were
deleted because they specifically tested the way we fixed unwind
mismatches before using `exnref`s and branches, which we don't do
anymore.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D94048
After placing markers, we removed some unnecessary branches, but it only
handled the simplest case. This makes more unnecessary branches to be
removed.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94047
Updating `ScopeTops` is something we frequently do in CFGStackify, so
this factors it out as a function. This also makes a few utility
functions templated so that they are not dependent on input vector
types and simplifies function parameters.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D94046
This ensures every single terminate pad is a single BB in the form of:
```
%exn = catch $__cpp_exception
call @__clang_call_terminate(%exn)
unreachable
```
This is a preparation for HandleEHTerminatePads pass, which will be
added in a later CL and will run after CFGStackify. That pass duplicates
terminate pads with a `catch_all` instruction, and duplicating it
becomes simpler if we can ensure every terminate pad is a single BB.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94045
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
This implements basic instructions for the new spec.
- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
- `catch` needs a custom routine for the same reason `throw` needs one,
to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
and Change code that compares an instruction's opcode with `catch` to
use that function.
- LateEHPrepare
- Previously in LateEHPrepare we added `catch` instruction to both
`catchpad`s (for user catches) and `cleanuppad`s (for destructors).
In the new version `catch` is generated from `llvm.catch` intrinsic
in instruction selection phase, so we only need to add `catch_all`
to the beginning of cleanup pads.
- `catch` is generated from instruction selection, but we need to
hoist the `catch` instruction to the beginning of every EH pad,
because `catch` can be in the middle of the EH pad or even in a
split BB from it after various code transformations.
- Removes `addExceptionExtraction` function, which was used to
generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
function on the new instruction causes crashes, and the new version
will be added in a later CL, whose contents will be completely
different. So deleting the whole function will make the diff easier to
read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
`br_on_exn` instructions from the tests and FileCheck lines.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94040
This adds missing `select` instruction support and block return type
support for reference types. Also refactors WebAssemblyInstrRef.td and
rearranges tests in reference-types.s. Tests don't include `exnref`
types, because we currently don't support `exnref` for `ref.null` and
the type will be removed soon anyway.
Reviewed By: tlively, sbc100, wingo
Differential Revision: https://reviews.llvm.org/D92359
When the function return type is non-void and `end` instructions are at
the very end of a function, CFGStackify's `fixEndsAtEndOfFunction`
function fixes the corresponding block/loop/try's type to match the
function's return type. This is applied to consecutive `end` markers at
the end of a function. For example, when the function return type is
`i32`,
```
block i32 ;; return type is fixed to i32
...
loop i32 ;; return type is fixed to i32
...
end_loop
end_block
end_function
```
But try-catch is a little different, because it consists of two parts:
a try part and a catch part, and both parts' return type should satisfy
the function's return type. Which means,
```
try i32 ;; return type is fixed to i32
...
block i32 ;; this should be changed i32 too!
...
end_block
catch
...
end_try
end_function
```
As you can see in this example, it is not sufficient to only `end`
instructions at the end of a function; in case of `try`, we should
check instructions before `catch`es, in case their corresponding `try`'s
type has been fixed.
This changes `fixEndsAtEndOfFunction`'s algorithm to use a worklist
that contains a reverse iterator, each of which is a starting point for
a new backward `end` instruction search.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47413.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D87207
When it was first created, CFGSort only made sure BBs in each
`MachineLoop` are sorted together. After we added exception support,
CFGSort now also sorts BBs in each `WebAssemblyException`, which
represents a `catch` block, together, and
`Region` class was introduced to be a thin wrapper for both
`MachineLoop` and `WebAssemblyException`.
But how we compute those loops and exceptions is different.
`MachineLoopInfo` is constructed using the standard loop computation
algorithm in LLVM; the definition of loop is "a set of BBs that are
dominated by a loop header and have a path back to the loop header". So
even if some BBs are semantically contained by a loop in the original
program, or in other words dominated by a loop header, if they don't
have a path back to the loop header, they are not considered a part of
the loop. For example, if a BB is dominated by a loop header but
contains `call abort()` or `rethrow`, it wouldn't have a path back to
the header, so it is not included in the loop.
But `WebAssemblyException` is wasm-specific data structure, and its
algorithm is simple: a `WebAssemblyException` consists of an EH pad and
all BBs dominated by the EH pad. So this scenario is possible: (This is
also the situation in the newly added test in cfg-stackify-eh.ll)
```
Loop L: header, A, ehpad, latch
Exception E: ehpad, latch, B
```
(B contains `abort()`, so it does not have a path back to the loop
header, so it is not included in L.)
And it is sorted in this order:
```
header
A
ehpad
latch
B
```
And when CFGStackify places `end_loop` or `end_try` markers, it
previously used `WebAssembly::getBottom()`, which returns the latest BB
in the sorted order, and placed the marker there. So in this case the
marker placements will be like this:
```
loop
header
try
A
catch
ehpad
latch
end_loop <-- misplaced!
B
end_try
```
in which nesting between the loop and the exception is not correct.
`end_loop` marker has to be placed after `B`, and also after `end_try`.
Maybe the fundamental way to solve this problem is to come up with our
own algorithm for computing loop region too, in which we include all BBs
dominated by a loop header in a loop. But this takes a lot more effort.
The only thing we need to fix is actually, `getBottom()`. If we make it
return the right BB, which means in case of a loop, the latest BB of the
loop itself and all exceptions contained in there, we are good.
This renames `Region` and `RegionInfo` to `SortRegion` and
`SortRegionInfo` and extracts them into their own file. And add
`getBottom` to `SortRegionInfo` class, from which it can access
`WebAssemblyExceptionInfo`, so that it can compute a correct bottom
block for loops.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D84724
When created in RegStackify pass, `TEE` has two destinations, where
op0 is stackified and op1 is not. But it is possible that
op0 becomes unstackified in `fixUnwindMismatches` function in
CFGStackify pass when a nested try-catch-end is introduced, violating
the invariant of `TEE`s destinations.
In this case we convert the `TEE` into two `COPY`s, which will
eventually be resolved in ExplicitLocals.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D81851
Summary:
One of the things `removeUnnecessaryInstrs()` in CFGStackify does is to
remove an unnecessary unconditinal branch before an EH pad. When there
is an unconditional branch right before a catch instruction and it
branches to the end of `end_try` marker, we don't need the branch,
because it there is no exception, the control flow transfers to
that point anyway.
```
bb0:
try
...
br bb2 <- Not necessary
bb1:
catch
...
bb2:
end
```
This applies when we have a conditional branch followed by an
unconditional one, in which case we should only remove the unconditional
branch. For example:
```
bb0:
try
...
br_if someplace_else
br bb2 <- Not necessary
bb1:
catch
...
bb2:
end
```
But `TargetInstrInfo::removeBranch` we used removed all existing
branches when there are multiple ones. This patch fixes it by only
deleting the last (= unconditional) branch manually.
Also fixes some `preds` comments in the test file.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80572
Replace with forward declaration and move dependency down to source files that actually need it.
Both TargetLowering.h and TargetMachine.h are 2 of the most expensive headers (top 10) in the ClangBuildAnalyzer report when building llc.
Summary:
This fixes a few things that are connected. It is very hard to provide
an independent test case for each of those fixes, because they are
interconnected and sometimes one masks another. The provided test case
triggers some of those bugs below but not all.
---
1. Background:
`placeBlockMarker` takes a BB, and if the BB is a destination of some
branch, it places `end_block` marker there, and computes the nearest
common dominator of all predecessors (what we call 'header') and places
a `block` marker there.
When we first place markers, we traverse BBs from top to bottom. For
example, when there are 5 BBs A, B, C, D, and E and B, D, and E are
branch destinations, if mark the BB given to `placeBlockMarker` with `*`
and draw a rectangle representing the border of `block` and `end_block`
markers, the process is going to look like
```
-------
----- |-----|
--- |---| ||---||
|A| ||A|| |||A|||
--- --> |---| --> ||---||
*B | B | || B ||
C | C | || C ||
D ----- |-----|
E *D | D |
E -------
*E
```
which means when we first place markers, we go from inner to outer
scopes. So when we place a `block` marker, if the header already
contains other `block` or `try` marker, it has to belong to an inner
scope, so the existing `block`/`try` markers should go _after_ the new
marker. This was the assumption we had.
But after placing all markers we run `fixUnwindMismatches` function.
There we do some control flow transformation and create some branches,
and we call `placeBlockMarker` again to place `block`/`end_block`
markers for those newly created branches. We can't assume that we are
traversing branch destination BBs from top to bottom now because we are
basically inserting some new markers in the middle of existing markers.
Fix:
In `placeBlockMarker`, we don't have the assumption that the BB given is
in the order of top to bottom, and when placing `block` markers,
calculates whether existing `block` or `try` markers are inner or
outer scopes with respect to the current scope.
---
2. Background:
In `fixUnwindMismatches`, when there is a call whose correct unwind
destination mismatches the current destination after initially placing
`try` markers, we wrap that with a new nested `try`/`catch`/`end` and
jump to the correct handler within the new `catch`. The correct handler
code is split as a separate BB from its original EH pad so it can be
branched to. Here's an example:
- Before
```
mbb:
call @foo <- Unwind destination mismatch!
wrong-ehpad:
catch
...
cont:
end_try
...
correct-ehpad:
catch
[handler code]
```
- After
```
mbb:
try (new)
call @foo
nested-ehpad: (new)
catch (new)
local.set n / drop (new)
br %handleri (new)
nested-end: (new)
end_try (new)
wrong-ehpad:
catch
...
cont:
end_try
...
correct-ehpad:
catch
local.set n / drop (new)
handler: (new)
end_try
[handler code]
```
Note that after this transformation, it is possible there are no calls
to actually unwind to `correct-ehpad` here. `call @foo` now
branches to `handler`, and there can be no other calls to unwind to
`correct-ehpad`. In this case `correct-ehpad` does not have any
predecessors anymore.
This can cause a bug in `placeBlockMarker`, because we may need to place
`end_block` marker in `handler`, and `placeBlockMarker` computes the
nearest common dominator of all predecessors. If one of `handler`'s
predecessor (here `correct-ehpad`) does not have any predecessors, i.e.,
no way of reaching it, we cannot correctly compute the common dominator
of predecessors of `handler`, and end up placing no `block`/`end`
markers. This bug actually sometimes masks the bug 1.
Fix:
When we have an EH pad that does not have any predecessors after this
transformation, deletes all its successors, so that its successors don't
have any dangling predecessors.
---
3. Background:
Actually the `handler` BB in the example shown in bug 2 doesn't need
`end_block` marker, despite it being a new branch destination, because
it already has `end_try` marker which can serve the same purpose. I just
put that example there for an illustration purpose. There is a case we
actually need to place `end_block` marker: when the branch dest is the
appendix BB. The appendix BB is created when there is a call that is
supposed to unwind to the caller ends up unwinding to a wrong EH pad. In
this case we also wrap the call with a nested `try`/`catch`/`end`,
create an 'appendix' BB at the very end of the function, and branch to
that BB, where we rethrow the exception to the caller.
Fix:
When we don't actually need to place block markers, we don't.
---
4. In case we fall through to the continuation BB after the catch block,
after extracting handler code in `fixUnwindMismatches` (refer to bug 2
for an example), we now have to add a branch to it to bypass the
handler.
- Before
```
try
...
(falls through to 'cont')
catch
handler body
end
<-- cont
```
- After
```
try
...
br %cont (new)
catch
end
handler body
<-- cont
```
The problem is, we haven't been placing a new `end_block` marker in the
`cont` BB in this case. We should, and this fixes it. But it is hard to
provide a test case that triggers this bug, because the current
compilation pipeline from .ll to .s does not generate this kind of code;
we always have a `br` after `invoke`. But code without `br` is still
valid, and we can have that kind of code if we have some pipeline
changes or optimizations later. Even mir test cases cannot trigger this
part for now, because we don't encode auxiliary EH-related data
structures (such as `WasmEHFuncInfo`) in mir now. Those functionalities
can be added later, but I don't think we should block this fix on that.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79324
Summary:
In CFGStackify, `fixUnwindMismatches` function fixes unwind destination
mismatches created by `try` marker placement. For example,
```
try
...
call @qux ;; This should throw to the caller!
catch
...
end
```
When `call @qux` is supposed to throw to the caller, it is possible that
it is wrapped inside a `catch` so in case it throws it ends up unwinding
there incorrectly. (Also it is possible `call @qux` is supposed to
unwind to another `catch` within the same function.)
To fix this, we wrap this inner `call @qux` with a nested
`try`-`catch`-`end` sequence, and within the nested `catch` body, branch
to the right destination:
```
block $l0
try
...
try ;; new nested try
call @qux
catch ;; new nested catch
local.set n ;; store exnref to a local
br $l0
end
catch
...
end
end
local.get n ;; retrieve exnref back
rethrow ;; rethrow to the caller
```
The previous algorithm placed the nested `try` right before the `call`.
But it is possible that there are stackified instructions before the
call from which the call takes arguments.
```
try
...
i32.const 5
call @qux ;; This should throw to the caller!
catch
...
end
```
In this case we have to place `try` before those stackified
instructions.
```
block $l0
try
...
try ;; this should go *before* 'i32.const 5'
i32.const 5
call @qux
catch
local.set n
br $l0
end
catch
...
end
end
local.get n
rethrow
```
We correctly handle this in the first normal `try` placement phase
(`placeTryMarker` function), but failed to handle this in this
`fixUnwindMismatches`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77950
Summary:
Renames `ExprType` to the more apt `BlockType` and adds a variant for
multivalue blocks. Currently non-void blocks are only generated at the
end of functions where the block return type needs to agree with the
function return type, and that remains true for multivalue
blocks. That invariant means that the actual signature does not need
to be stored in the block signature `MachineOperand` because it can be
inferred by `WebAssemblyMCInstLower` from the return type of the
parent function. `WebAssemblyMCInstLower` continues to lower block
signature operands to immediates when possible but lowers multivalue
signatures to function type symbols. The AsmParser and Disassembler
are updated to handle multivalue block types as well.
Reviewers: aheejin, dschuff, aardappel
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68889
llvm-svn: 374933
Summary:
This is necessary and sufficient to get simple cases of multiple
return working with multivalue enabled. More complex cases will
require block and loop signatures to be generalized to potentially be
type indices as well.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68684
llvm-svn: 374235
Summary:
When searching for local expression tree created by stackified
registers, for 'block' placement, we start the search from the previous
instruction of a BB's terminator. But in 'try''s case, we should start
from the previous instruction of a call that can throw, or a EH_LABEL
that precedes the call, because the return values of the call's previous
instructions can be stackified and consumed by the throwing call.
For example,
```
i32.call @foo
call @bar ; may throw
br $label0
```
In this case, if we start the search from the previous instruction of
the terminator (`br` here), we end up stopping at `call @bar` and place
a 'try' between `i32.call @foo` and `call @bar`, because `call @bar`
does not have a return value so it is not a local expression tree of
`br`.
But in this case, unlike when placing 'block's, we should start the
search from `call @bar`, because the return value of `i32.call @foo` is
stackified and used by `call @bar`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68619
llvm-svn: 374073
Summary:
There was a bug when computing the number of unwind destination
mismatches in CFGStackify. When there are many mismatched calls that
share the same (original) destination BB, they have to be counted
separately.
This also fixes a typo and runs `fixUnwindMismatches` only when the wasm
exception handling is enabled. This is to prevent unnecessary
computations and does not change behavior.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68552
llvm-svn: 373975
Summary:
Fixing unwind mismatches for exception handling can result in splicing
existing BBs and moving some of instructions to new BBs. In this case
some of stackified def registers in the original BB can be used in the
split BB. For example, we have this BB and suppose %r0 is a stackified
register.
```
bb.1:
%r0 = call @foo
... use %r0 ...
```
After fixing unwind mismatches in CFGStackify, `bb.1` can be split and
some instructions can be moved to a newly created BB:
```
bb.1:
%r0 = call @foo
bb.split (new):
... use %r0 ...
```
In this case we should make %r0 un-stackified, because its use is now in
another BB.
When spliting a BB, this CL unstackifies all def registers that have
uses in the new split BB.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68218
llvm-svn: 373301
Summary:
We agreed to rename `except_ref` to `exnref` for consistency with other
reference types in
https://github.com/WebAssembly/exception-handling/issues/79. This also
renames WebAssemblyInstrExceptRef.td to WebAssemblyInstrRef.td in order
to use the file for other reference types in future.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64703
llvm-svn: 366145
Summary:
Most of these functions can work for MachineInstr and MCInst
equally now.
Reviewers: dschuff
Subscribers: MatzeB, sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64643
llvm-svn: 365965
Summary:
Linearing the control flow by placing `try`/`end_try` markers can create
mismatches in unwind destinations. This patch resolves these mismatches
by wrapping those instructions with an incorrect unwind destination with
a nested `try`/`catch`/`end_try` and branching to the right destination
within the new catch block.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, chrib, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D48345
llvm-svn: 357343
Summary:
This fixes crashes when a BB in which an END_LOOP is to be placed is
unreachable and does not have any predecessors. Fixes PR41307.
Reviewers: dschuff
Subscribers: yurydelendik, sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60004
llvm-svn: 357303
Summary:
This adds `CFGStackified` field and its serialization to
WebAssemblyFunctionInfo.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59747
llvm-svn: 357011
Summary:
When TRY and LOOP markers are in the same BB and END_TRY and END_LOOP
markers are in the same BB, END_TRY should be _before_ END_LOOP, because
LOOP is always before TRY if they are in the same BB. (TRY is placed in
the latest possible position, whereas LOOP is in the earliest possible
position.)
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59751
llvm-svn: 357008
Summary:
Before we placed all TRY/END_TRY markers before placing BLOCK/END_BLOCK
markers. This couldn't handle this case:
```
bb0:
br bb2
bb1: // nearest common dominator of bb3 and bb4
br_if ... bb3
br bb4
bb2:
...
bb3:
call @foo // unwinds to ehpad
bb4:
call @bar // unwinds to ehpad
ehpad:
catch
...
```
When we placed TRY markers, we placed it in bb1 because it is the
nearest common dominator of bb3 and bb4. But because bb0 jumps to bb2,
when we placed block markers, we ended up with interleaved scopes like
```
block
try
end_block
catch
end_try
```
which was not correct.
This patch fixes the bug by placing BLOCK and TRY markers in one pass
while iterating BBs in a function. This also adds some more routines to
`placeTryMarkers`, because we now have to assume that there can be
previously placed BLOCK and END_BLOCK.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59739
llvm-svn: 357007
Summary:
After instruction selection phase, possibly-throwing calls, which were
previously invoke, are wrapped in `EH_LABEL` instructions. For example:
```
EH_LABEL <mcsymbol .Ltmp0>
CALL_VOID @foo ...
EH_LABEL <mcsymbol .Ltmp1>
```
`EH_LABEL` is placed also in the beginning of EH pads:
```
bb.1 (landing-pad):
EH_LABEL <mcsymbol .Ltmp2>
...
```
And we'd like to maintian this relationship, so when we place a `try`,
```
TRY ...
EH_LABEL <mcsymbol .Ltmp0>
CALL_VOID @foo ...
EH_LABEL <mcsymbol .Ltmp1>
```
When we place a `catch`,
```
bb.1 (landing-pad):
EH_LABEL <mcsymbol .Ltmp2>
%0:except_ref = CATCH ...
...
```
Previously we didn't treat EH_LABELs specially, so `try` was placed
right before a call, and `catch` was placed in the beginning of an EH
pad.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58914
llvm-svn: 355996
Summary:
- Replaces some uses of `MachineFunction::iterator(MBB)` with
`MBB->getIterator()` and `MachineBasicBlock::iterator(MI)` with
`MI->getIterator()`, which are simpler.
- Replaces some uses of `std::prev` of `std::next` that takes a
MachineFunction or MachineBasicBlock iterator with `getPrevNode` and
`getNextNode`, which are also simpler.
Reviewers: sbc100
Subscribers: dschuff, sunfish, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58913
llvm-svn: 355444
Summary:
When creating `ScopeTops` info for `try` ~ `catch` ~ `end_try`, we
should create not only `end_try` -> `try` mapping but also `catch` ->
`try` mapping as well. If this is not created, `block` and `end_block`
markers later added may span across an existing `catch`, resulting in
the incorrect code like:
```
try
block --| (X)
catch |
end_block --|
end_try
```
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58605
llvm-svn: 354945
Summary:
This removes unnecessary instructions after TRY marker placement. There
are two cases:
- `end`/`end_block` can be removed if they overlap with `try`/`end_try`
and they have the same return types.
- `br` right before `catch` that branches to after `end_try` can be
deleted.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58591
llvm-svn: 354939
Summary:
This patch fixes clang-tidy warnings on wasm-only files.
The list of checks used is:
`-*,clang-diagnostic-*,llvm-*,misc-*,-misc-unused-parameters,readability-identifier-naming,modernize-*`
(LLVM's default .clang-tidy list is the same except it does not have
`modernize-*`. But I've seen in multiple CLs in LLVM the modernize style
was recommended and code was fixed based on the style, so I added it as
well.)
The common fixes are:
- Variable names start with an uppercase letter
- Function names start with a lowercase letter
- Use `auto` when you use casts so the type is evident
- Use inline initialization for class member variables
- Use `= default` for empty constructors / destructors
- Use `using` in place of `typedef`
Reviewers: sbc100, tlively, aardappel
Subscribers: dschuff, sunfish, jgravelle-google, yurydelendik, kripken, MatzeB, mgorny, rupprecht, llvm-commits
Differential Revision: https://reviews.llvm.org/D57500
llvm-svn: 353075
Summary:
This switches the EH implementation to the new proposal:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
(The previous proposal was
https://github.com/WebAssembly/exception-handling/blob/master/proposals/old/Exceptions.md)
- Instruction changes
- Now we have one single `catch` instruction that returns a except_ref
value
- `throw` now can take variable number of operations
- `rethrow` does not have 'depth' argument anymore
- `br_on_exn` queries an except_ref to see if it matches the tag and
branches to the given label if true.
- `extract_exception` is a pseudo instruction that simulates popping
values from wasm stack. This is to make `br_on_exn`, a very special
instruction, work: `br_on_exn` puts values onto the stack only if it
is taken, and the # of values can vay depending on the tag.
- Now there's only one `catch` per `try`, this patch removes all special
handling for terminate pad with a call to `__clang_call_terminate`.
Before it was the only case there are two catch clauses (a normal
`catch` and `catch_all` per `try`).
- Make `rethrow` act as a terminator like `throw`. This splits BB after
`rethrow` in WasmEHPrepare, and deletes an unnecessary `unreachable`
after `rethrow` in LateEHPrepare.
- Now we stop at all catchpads (because we add wasm `catch` instruction
that catches all exceptions), this creates new
`findWasmUnwindDestinations` function in SelectionDAGBuilder.
- Now we use `br_on_exn` instrution to figure out if an except_ref
matches the current tag or not, LateEHPrepare generates this sequence
for catch pads:
```
catch
block i32
br_on_exn $__cpp_exception
end_block
extract_exception
```
- Branch analysis for `br_on_exn` in WebAssemblyInstrInfo
- Other various misc. changes to switch to the new proposal.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D57134
llvm-svn: 352598
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636