450 Commits

Author SHA1 Message Date
Alexey Zhikhartsev
6516543c4b Add jump-threading optimization for deterministic finite automata
The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.

This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.

This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:

```
          sw.bb                        sw.bb
        /   |   \                    /   |   \
   case1  case2  case3          case1  case2  case3
        \   |   /                /       |       \
        latch.bb             latch.2  latch.3  latch.1
         br sw.bb              /         |         \
                           sw.bb.2     sw.bb.3     sw.bb.1
                            br case2    br case3    br case1
```

Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D99205
2021-07-27 14:34:04 -04:00
Bjorn Pettersson
8be96b95c4 [NewPM] Consistently use 'simplifycfg' rather than 'simplify-cfg'
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.

This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.

I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.

Reviewed By: aeubanks

Differential Revision: https://reviews.llvm.org/D105627
2021-07-09 09:47:03 +02:00
Roman Lebedev
e9c11e84f4 [NFC][PassBuilder] addVectorPasses(): clarify that 'IsLTO' is actually 'IsFullLTO'
I.e. it will be `false` for thin lto.
2021-07-01 10:09:24 +03:00
Sjoerd Meijer
6a49dbd1a3 Function Specialization Pass
This adds a function specialization pass to LLVM. Constant parameters
like function pointers and constant globals are propagated to the callee by
specializing the function.

This is a first version with a number of limitations:
- The pass is off by default, so needs to be enabled on the command line,
- It does not handle specialization of recursive functions,
- It does not yet handle constants and constant ranges,
- Only 1 argument per function is specialised,
- The cost-model could be further looked into, and perhaps related,
- We are not yet caching analysis results.

This is based on earlier work by Matthew Simpson (D36432) and Vinay Madhusudan.
More recently this was also discussed on the list, see:

https://lists.llvm.org/pipermail/llvm-dev/2021-March/149380.html.

The motivation for this work is that function specialisation often comes up as
a reason for performance differences of generated code between LLVM and GCC,
which has this enabled by default from optimisation level -O3 and up. And while
this certainly helps a few cpu benchmark cases, this also triggers in real
world codes and is thus a generally useful transformation to have in LLVM.

Function specialisation has great potential to increase compile-times and
code-size.  The summary from some investigations with this patch is:
- Compile-time increases for short compile jobs is high relatively, but the
  increase in absolute numbers still low.
- For longer compile-jobs, the extra compile time is around 1%, and very much
  in line with GCC.
- It is difficult to blame one thing for compile-time increases: it looks like
  everywhere a little bit more time is spent processing more functions and
  instructions.
- But the function specialisation pass itself is not very expensive; it doesn't
  show up very high in the profile of the optimisation passes.

The goal of this work is to reach parity with GCC which means that eventually
we would like to get this enabled by default. But first we would like to address
some of the limitations before that.

Differential Revision: https://reviews.llvm.org/D93838
2021-06-11 09:11:29 +01:00
Sanjay Patel
c3c1a4a935 [PassManager] unify late simplifycfg options between regular and LTO pipelines
This is split off from D102002, and I think it is clear that
the difference in behavior was not intended. Options were
added to SimplifyCFG over time, but different chunks of
the pass pipelines were not kept in sync.
2021-05-28 13:06:49 -04:00
Sanjay Patel
971fe30acc [PassManager] add helper function to hold set of vector passes (2nd try)
This is better no-functional-change-intended than the 1st attempt.
As noted in D102002, there were at least 2 diffs that went
unchecked in pass manager regressions tests: different pass
parameters (SimplifyCFG) and an extension point/callback.
Those should be lifted from the original code blocks correctly
now.
2021-05-10 14:43:00 -04:00
Sanjay Patel
c4e864aeaf Revert "[PassManager] add helper function to hold set of vector passes"
This reverts commit fefcb1f878c2dad435af604955661ca02a5302de.
It was supposed to be NFC, but as noted in the post-commit
comments in D102002, that was not true: SimplifyCFG uses
different parameters and there's a difference in an
extension point / callback.
2021-05-10 10:59:30 -04:00
Adrian Prantl
aade3db1e3 Fix the module-enabled build by removing a redundant type definition. 2021-05-07 14:45:17 -07:00
Fangrui Song
9289990558 Internalize some cl::opt global variables or move them under namespace llvm 2021-05-07 11:15:43 -07:00
Sanjay Patel
290838c72e [PassManager] add helper function to hold set of vector passes
This is no-functional-change-intended (NFC) and split off from
D102002 (which proposes to eliminate the LTO-based differences).
2021-05-06 15:36:15 -04:00
Florian Hahn
bbc6b99422 [Passes] Run sinking/hoisting in SimplifyCFG earlier.
Hoisting and sinking instructions out of conditional blocks enables
additional vectorization by:

1. Executing memory accesses unconditionally.
2. Reducing the number of instructions that need predication.

After disabling early hoisting / sinking, we miss out on a few
vectorization opportunities. One of those is causing a ~10% performance
regression in one of the Geekbench benchmarks on AArch64.

This patch tires to recover the regression by running hoisting/sinking
as part of a SimplifyCFG run after LoopRotate and before LoopVectorize.

Note that in the legacy pass-manager, we run LoopRotate just before
vectorization again and there's no SimplifyCFG run in between, so the
sinking/hoisting may impact the later run on LoopRotate. But the impact
should be limited and the benefit of hosting/sinking at this stage
should outweigh the risk of not rotating.

Compile-time impact looks slightly positive for most cases.
http://llvm-compile-time-tracker.com/compare.php?from=2ea7fb7b1c045a7d60fcccf3df3ebb26aa3699e5&to=e58b4a763c691da651f25996aad619cb3d946faf&stat=instructions

NewPM-O3: geomean -0.19%
NewPM-ReleaseThinLTO: geoman -0.54%
NewPM-ReleaseLTO-g: geomean -0.03%

With a few benchmarks seeing a notable increase, but also some
improvements.

Alternative to D101290.

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D101468
2021-04-30 12:23:57 +01:00
Joseph Huber
56eaebd6b2 [OpenMP] Add OpenMPOpt as a Module pass
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D99202
2021-04-20 12:28:58 -04:00
Sanjay Patel
edd6c8b874 [PassManager][PhaseOrdering] lower expects before running simplifyCFG
Retry of 330619a3a623 that includes a clang test update.

Original commit message:

If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898 <https://reviews.llvm.org/D98898>.

In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.

We make the same change to the old pass manager to keep things synchronized.

Differential Revision: https://reviews.llvm.org/D100213
2021-04-12 15:07:53 -04:00
Sanjay Patel
1d8bce8db0 Revert "[PassManager][PhaseOrdering] lower expects before running simplifyCFG"
This reverts commit 330619a3a623d623944c58ebc06cbb83ac0e58af.
There are clang tests that also need to be updated.
2021-04-12 13:58:54 -04:00
Sanjay Patel
2c346dcce3 [PassManager][PhaseOrdering] lower expects before running simplifyCFG
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898.

In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.

We make the same change to the old pass manager to keep things synchronized.

Differential Revision: https://reviews.llvm.org/D100213
2021-04-12 12:23:31 -04:00
Roman Lebedev
360691947c [PassManager] Run additional LICM before LoopRotate
Loop rotation often has to perform code duplication
from header into preheader, which introduces PHI nodes.

>>! In D99204, @thopre wrote:
>
> With loop peeling, it is important that unnecessary PHIs be avoided or
> it will leads to spurious peeling. One source of such PHIs is loop
> rotation which creates PHIs for invariant loads. Those PHIs are
> particularly problematic since loop peeling is now run as part of simple
> loop unrolling before GVN is run, and are thus a source of spurious
> peeling.
>
> Note that while some of the load can be hoisted and eventually
> eliminated by instruction combine, this is not always possible due to
> alignment issue. In particular, the motivating example [1] was a load
> inside a class instance which cannot be hoisted because the `this'
> pointer has an alignment of 1.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/attachments/20210312/4ce73c47/attachment.cpp

Now, we could enhance LoopRotate to avoid duplicating code when not needed,
but instead hoist loop-invariant code, but isn't that a code duplication? (*sic*)
We have LICM, and in fact we already run it right after LoopRotation.

We could try to move it to before LoopRotation,
that is basically free from compile-time perspective:
https://llvm-compile-time-tracker.com/compare.php?from=6c93eb4477d88af046b915bc955c03693b2cbb58&to=a4bee6d07732b1184c436da489040b912f0dc271&stat=instructions
But, looking at stats, i think it isn't great that we would no longer do LICM after LoopRotation, in particular:
| statistic name                                   | LoopRotate-LICM | LICM-LoopRotate |     Δ |       % | abs(%) |
| asm-printer.EmittedInsts                         | 9015930         | 9015799         |  -131 |   0.00% |  0.00% |
| indvars.NumElimCmp                               | 3536            | 3544            |     8 |   0.23% |  0.23% |
| indvars.NumElimExt                               | 36725           | 36580           |  -145 |  -0.39% |  0.39% |
| indvars.NumElimIV                                | 1197            | 1187            |   -10 |  -0.84% |  0.84% |
| indvars.NumElimIdentity                          | 143             | 136             |    -7 |  -4.90% |  4.90% |
| indvars.NumElimRem                               | 4               | 5               |     1 |  25.00% | 25.00% |
| indvars.NumLFTR                                  | 29842           | 29890           |    48 |   0.16% |  0.16% |
| indvars.NumReplaced                              | 2293            | 2227            |   -66 |  -2.88% |  2.88% |
| indvars.NumSimplifiedSDiv                        | 6               | 8               |     2 |  33.33% | 33.33% |
| indvars.NumWidened                               | 26438           | 26329           |  -109 |  -0.41% |  0.41% |
| instcount.TotalBlocks                            | 1178338         | 1173840         | -4498 |  -0.38% |  0.38% |
| instcount.TotalFuncs                             | 111825          | 111829          |     4 |   0.00% |  0.00% |
| instcount.TotalInsts                             | 9905442         | 9896139         | -9303 |  -0.09% |  0.09% |
| lcssa.NumLCSSA                                   | 425871          | 423961          | -1910 |  -0.45% |  0.45% |
| licm.NumHoisted                                  | 378357          | 378753          |   396 |   0.10% |  0.10% |
| licm.NumMovedCalls                               | 2193            | 2208            |    15 |   0.68% |  0.68% |
| licm.NumMovedLoads                               | 35899           | 31821           | -4078 | -11.36% | 11.36% |
| licm.NumPromoted                                 | 11178           | 11154           |   -24 |  -0.21% |  0.21% |
| licm.NumSunk                                     | 13359           | 13587           |   228 |   1.71% |  1.71% |
| loop-delete.NumDeleted                           | 8547            | 8402            |  -145 |  -1.70% |  1.70% |
| loop-instsimplify.NumSimplified                  | 12876           | 11890           |  -986 |  -7.66% |  7.66% |
| loop-peel.NumPeeled                              | 1008            | 925             |   -83 |  -8.23% |  8.23% |
| loop-rotate.NumNotRotatedDueToHeaderSize         | 368             | 365             |    -3 |  -0.82% |  0.82% |
| loop-rotate.NumRotated                           | 42015           | 42003           |   -12 |  -0.03% |  0.03% |
| loop-simplifycfg.NumLoopBlocksDeleted            | 240             | 242             |     2 |   0.83% |  0.83% |
| loop-simplifycfg.NumLoopExitsDeleted             | 497             | 20              |  -477 | -95.98% | 95.98% |
| loop-simplifycfg.NumTerminatorsFolded            | 618             | 336             |  -282 | -45.63% | 45.63% |
| loop-unroll.NumCompletelyUnrolled                | 11028           | 11032           |     4 |   0.04% |  0.04% |
| loop-unroll.NumUnrolled                          | 12608           | 12529           |   -79 |  -0.63% |  0.63% |
| mem2reg.NumDeadAlloca                            | 10222           | 10221           |    -1 |  -0.01% |  0.01% |
| mem2reg.NumPHIInsert                             | 192110          | 192106          |    -4 |   0.00% |  0.00% |
| mem2reg.NumSingleStore                           | 637650          | 637643          |    -7 |   0.00% |  0.00% |
| scalar-evolution.NumBruteForceTripCountsComputed | 814             | 812             |    -2 |  -0.25% |  0.25% |
| scalar-evolution.NumTripCountsComputed           | 283108          | 282934          |  -174 |  -0.06% |  0.06% |
| scalar-evolution.NumTripCountsNotComputed        | 106712          | 106718          |     6 |   0.01% |  0.01% |
| simple-loop-unswitch.NumBranches                 | 5178            | 4752            |  -426 |  -8.23% |  8.23% |
| simple-loop-unswitch.NumCostMultiplierSkipped    | 914             | 503             |  -411 | -44.97% | 44.97% |
| simple-loop-unswitch.NumSwitches                 | 20              | 18              |    -2 | -10.00% | 10.00% |
| simple-loop-unswitch.NumTrivial                  | 183             | 95              |   -88 | -48.09% | 48.09% |

... but that actually regresses LICM (-12% `licm.NumMovedLoads`),
loop-simplifycfg (`NumLoopExitsDeleted`, `NumTerminatorsFolded`),
simple-loop-unswitch (`NumTrivial`).

What if we instead have LICM both before and after LoopRotate?
| statistic name                                | LoopRotate-LICM | LICM-LoopRotate-LICM |     Δ |       % | abs(%) |
| asm-printer.EmittedInsts                      | 9015930         | 9014474              | -1456 |  -0.02% |  0.02% |
| indvars.NumElimCmp                            | 3536            | 3546                 |    10 |   0.28% |  0.28% |
| indvars.NumElimExt                            | 36725           | 36681                |   -44 |  -0.12% |  0.12% |
| indvars.NumElimIV                             | 1197            | 1185                 |   -12 |  -1.00% |  1.00% |
| indvars.NumElimIdentity                       | 143             | 146                  |     3 |   2.10% |  2.10% |
| indvars.NumElimRem                            | 4               | 5                    |     1 |  25.00% | 25.00% |
| indvars.NumLFTR                               | 29842           | 29899                |    57 |   0.19% |  0.19% |
| indvars.NumReplaced                           | 2293            | 2299                 |     6 |   0.26% |  0.26% |
| indvars.NumSimplifiedSDiv                     | 6               | 8                    |     2 |  33.33% | 33.33% |
| indvars.NumWidened                            | 26438           | 26404                |   -34 |  -0.13% |  0.13% |
| instcount.TotalBlocks                         | 1178338         | 1173652              | -4686 |  -0.40% |  0.40% |
| instcount.TotalFuncs                          | 111825          | 111829               |     4 |   0.00% |  0.00% |
| instcount.TotalInsts                          | 9905442         | 9895452              | -9990 |  -0.10% |  0.10% |
| lcssa.NumLCSSA                                | 425871          | 425373               |  -498 |  -0.12% |  0.12% |
| licm.NumHoisted                               | 378357          | 383352               |  4995 |   1.32% |  1.32% |
| licm.NumMovedCalls                            | 2193            | 2204                 |    11 |   0.50% |  0.50% |
| licm.NumMovedLoads                            | 35899           | 35755                |  -144 |  -0.40% |  0.40% |
| licm.NumPromoted                              | 11178           | 11163                |   -15 |  -0.13% |  0.13% |
| licm.NumSunk                                  | 13359           | 14321                |   962 |   7.20% |  7.20% |
| loop-delete.NumDeleted                        | 8547            | 8538                 |    -9 |  -0.11% |  0.11% |
| loop-instsimplify.NumSimplified               | 12876           | 12041                |  -835 |  -6.48% |  6.48% |
| loop-peel.NumPeeled                           | 1008            | 924                  |   -84 |  -8.33% |  8.33% |
| loop-rotate.NumNotRotatedDueToHeaderSize      | 368             | 365                  |    -3 |  -0.82% |  0.82% |
| loop-rotate.NumRotated                        | 42015           | 42005                |   -10 |  -0.02% |  0.02% |
| loop-simplifycfg.NumLoopBlocksDeleted         | 240             | 241                  |     1 |   0.42% |  0.42% |
| loop-simplifycfg.NumTerminatorsFolded         | 618             | 619                  |     1 |   0.16% |  0.16% |
| loop-unroll.NumCompletelyUnrolled             | 11028           | 11029                |     1 |   0.01% |  0.01% |
| loop-unroll.NumUnrolled                       | 12608           | 12525                |   -83 |  -0.66% |  0.66% |
| mem2reg.NumPHIInsert                          | 192110          | 192073               |   -37 |  -0.02% |  0.02% |
| mem2reg.NumSingleStore                        | 637650          | 637652               |     2 |   0.00% |  0.00% |
| scalar-evolution.NumTripCountsComputed        | 283108          | 282998               |  -110 |  -0.04% |  0.04% |
| scalar-evolution.NumTripCountsNotComputed     | 106712          | 106691               |   -21 |  -0.02% |  0.02% |
| simple-loop-unswitch.NumBranches              | 5178            | 5185                 |     7 |   0.14% |  0.14% |
| simple-loop-unswitch.NumCostMultiplierSkipped | 914             | 925                  |    11 |   1.20% |  1.20% |
| simple-loop-unswitch.NumTrivial               | 183             | 179                  |    -4 |  -2.19% |  2.19% |
| simple-loop-unswitch.NumBranches              | 5178            | 4752                 |  -426 |  -8.23% |  8.23% |
| simple-loop-unswitch.NumCostMultiplierSkipped | 914             | 503                  |  -411 | -44.97% | 44.97% |
| simple-loop-unswitch.NumSwitches              | 20              | 18                   |    -2 | -10.00% | 10.00% |
| simple-loop-unswitch.NumTrivial               | 183             | 95                   |   -88 | -48.09% | 48.09% |

I.e. we end up with less instructions, less peeling, more LICM activity,
also note how none of those 4 regressions are here. Namely:

| statistic name                                   | LICM-LoopRotate | LICM-LoopRotate-LICM |     Δ |        % |   abs(%) |
| asm-printer.EmittedInsts                         | 9015799         | 9014474              | -1325 |   -0.01% |    0.01% |
| indvars.NumElimCmp                               | 3544            | 3546                 |     2 |    0.06% |    0.06% |
| indvars.NumElimExt                               | 36580           | 36681                |   101 |    0.28% |    0.28% |
| indvars.NumElimIV                                | 1187            | 1185                 |    -2 |   -0.17% |    0.17% |
| indvars.NumElimIdentity                          | 136             | 146                  |    10 |    7.35% |    7.35% |
| indvars.NumLFTR                                  | 29890           | 29899                |     9 |    0.03% |    0.03% |
| indvars.NumReplaced                              | 2227            | 2299                 |    72 |    3.23% |    3.23% |
| indvars.NumWidened                               | 26329           | 26404                |    75 |    0.28% |    0.28% |
| instcount.TotalBlocks                            | 1173840         | 1173652              |  -188 |   -0.02% |    0.02% |
| instcount.TotalInsts                             | 9896139         | 9895452              |  -687 |   -0.01% |    0.01% |
| lcssa.NumLCSSA                                   | 423961          | 425373               |  1412 |    0.33% |    0.33% |
| licm.NumHoisted                                  | 378753          | 383352               |  4599 |    1.21% |    1.21% |
| licm.NumMovedCalls                               | 2208            | 2204                 |    -4 |   -0.18% |    0.18% |
| licm.NumMovedLoads                               | 31821           | 35755                |  3934 |   12.36% |   12.36% |
| licm.NumPromoted                                 | 11154           | 11163                |     9 |    0.08% |    0.08% |
| licm.NumSunk                                     | 13587           | 14321                |   734 |    5.40% |    5.40% |
| loop-delete.NumDeleted                           | 8402            | 8538                 |   136 |    1.62% |    1.62% |
| loop-instsimplify.NumSimplified                  | 11890           | 12041                |   151 |    1.27% |    1.27% |
| loop-peel.NumPeeled                              | 925             | 924                  |    -1 |   -0.11% |    0.11% |
| loop-rotate.NumRotated                           | 42003           | 42005                |     2 |    0.00% |    0.00% |
| loop-simplifycfg.NumLoopBlocksDeleted            | 242             | 241                  |    -1 |   -0.41% |    0.41% |
| loop-simplifycfg.NumLoopExitsDeleted             | 20              | 497                  |   477 | 2385.00% | 2385.00% |
| loop-simplifycfg.NumTerminatorsFolded            | 336             | 619                  |   283 |   84.23% |   84.23% |
| loop-unroll.NumCompletelyUnrolled                | 11032           | 11029                |    -3 |   -0.03% |    0.03% |
| loop-unroll.NumUnrolled                          | 12529           | 12525                |    -4 |   -0.03% |    0.03% |
| mem2reg.NumDeadAlloca                            | 10221           | 10222                |     1 |    0.01% |    0.01% |
| mem2reg.NumPHIInsert                             | 192106          | 192073               |   -33 |   -0.02% |    0.02% |
| mem2reg.NumSingleStore                           | 637643          | 637652               |     9 |    0.00% |    0.00% |
| scalar-evolution.NumBruteForceTripCountsComputed | 812             | 814                  |     2 |    0.25% |    0.25% |
| scalar-evolution.NumTripCountsComputed           | 282934          | 282998               |    64 |    0.02% |    0.02% |
| scalar-evolution.NumTripCountsNotComputed        | 106718          | 106691               |   -27 |   -0.03% |    0.03% |
| simple-loop-unswitch.NumBranches                 | 4752            | 5185                 |   433 |    9.11% |    9.11% |
| simple-loop-unswitch.NumCostMultiplierSkipped    | 503             | 925                  |   422 |   83.90% |   83.90% |
| simple-loop-unswitch.NumSwitches                 | 18              | 20                   |     2 |   11.11% |   11.11% |
| simple-loop-unswitch.NumTrivial                  | 95              | 179                  |    84 |   88.42% |   88.42% |

{F15983613} {F15983615} {F15983616}
(this is vanilla llvm testsuite + rawspeed + darktable)

As an example of the code where early LICM only is bad, see:
https://godbolt.org/z/GzEbacs4K

This does have an observable compile-time regression of +~0.5% geomean
https://llvm-compile-time-tracker.com/compare.php?from=7c5222e4d1a3a14f029e5f614c9aefd0fa505f1e&to=5d81826c3411982ca26e46b9d0aff34c80577664&stat=instructions
but i think that's basically nothing, and there's potential that it might
be avoidable in the future by fixing clang to produce alignment information
on function arguments, thus making the second run unneeded.

Differential Revision: https://reviews.llvm.org/D99249
2021-04-02 11:11:42 +03:00
Krasimir Georgiev
72bca5f483 Revert "[Passes] Add relative lookup table converter pass"
This reverts commit 5178ffc7cf92527557ae16e86d0fa90d538c2a19.

Compiling `llvm-profdata` with a compiler build from this produces a
crashing binary.
2021-03-30 14:13:37 +02:00
Gulfem Savrun Yeniceri
abf79b4a39 [Passes] Add relative lookup table converter pass
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244

This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.

Differential Revision: https://reviews.llvm.org/D94355
2021-03-29 21:53:32 +00:00
Gulfem Savrun Yeniceri
54e2d4cdab Revert "[Passes] Add relative lookup table converter pass"
This reverts commit 5fd001a5ffbad403053c4a06bf4b2b76dc52bba8
because it broke clang-with-thin-lto-ubuntu bot.
2021-03-24 18:59:33 +00:00
Gulfem Savrun Yeniceri
93b265f8c0 [Passes] Add relative lookup table converter pass
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244

This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.

Differential Revision: https://reviews.llvm.org/D94355
2021-03-24 17:31:18 +00:00
Gulfem Savrun Yeniceri
61bfb34ac2 Revert "[Passes] Add relative lookup table converter pass"
This reverts commit 78a65cd945d006ff02f9d24d9cc20a302ed93b08 which
caused buildbot failures.
2021-03-23 00:43:16 +00:00
Gulfem Savrun Yeniceri
59cc51764b [Passes] Add relative lookup table converter pass
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244

This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.

Differential Revision: https://reviews.llvm.org/D94355
2021-03-22 22:09:02 +00:00
Ta-Wei Tu
87e3ae17fd [NPM] Add -enable-loopinterchange option to NPM
We have the `enable-loopinterchange` option in legacy pass manager but not in NPM.
Add `LoopInterchange` pass to the optimization pipeline (at the same position as before)
when `enable-loopinterchange` is turned on.

Reviewed By: aeubanks, fhahn

Differential Revision: https://reviews.llvm.org/D98116
2021-03-07 02:39:28 +08:00
Arthur Eubanks
9edc5021eb Move EntryExitInstrumentation pass location
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.

Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.

Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143

Reviewed By: hans

Differential Revision: https://reviews.llvm.org/D97608
2021-03-01 10:08:10 -08:00
Nikita Popov
92fca6922a [MemCopyOpt] Enable MemorySSA by default
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.

Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.

Differential Revision: https://reviews.llvm.org/D94376
2021-02-19 18:06:25 +01:00
Bjorn Pettersson
3aa7f0e352 [NewPM] Add ExtraVectorizerPasses support
As it looks like NewPM generally is using SimpleLoopUnswitch
instead of LoopUnswitch, this patch also use SimpleLoopUnswitch
in the ExtraVectorizerPasses sequence (compared with LegacyPM
which use the LoopUnswitch pass).

Reviewed By: aeubanks

Differential Revision: https://reviews.llvm.org/D95457
2021-01-26 22:59:10 +01:00
Florian Hahn
752c4c588e [Passes] Run peeling as part of simple/full loop unrolling.
Loop peeling removes conditions from loop bodies that become invariant
after a small number of iterations. When triggered, this leads to fewer
compares and possibly PHIs in loop bodies, enabling further
optimizations. The current cost-model of loop peeling should be quite
conservative/safe, i.e. only peel if a condition in the loop becomes
known after peeling.

For example, see PR47671, where loop peeling enables vectorization by
removing a PHI the vectorizer does not understand. Granted, the
loop-vectorizer could also be taught about constant PHIs, but loop
peeling is likely to enable other optimizations as well.

This has an impact on quite a few benchmarks from
MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto, for example

    Same hash: 186 (filtered out)
    Remaining: 51
    Metric: loop-vectorize.LoopsVectorized

    Program                                        base   patch  diff
     test-suite...ve-susan/automotive-susan.test     8.00   9.00 12.5%
     test-suite...nal/skidmarks10/skidmarks.test    35.00  31.00 -11.4%
     test-suite...lications/sqlite3/sqlite3.test    41.00  43.00  4.9%
     test-suite...s/ASC_Sequoia/AMGmk/AMGmk.test    25.00  26.00  4.0%
     test-suite...006/450.soplex/450.soplex.test    88.00  89.00  1.1%
     test-suite...TimberWolfMC/timberwolfmc.test   120.00 119.00 -0.8%
     test-suite.../CINT2006/403.gcc/403.gcc.test   215.00 216.00  0.5%
     test-suite...006/447.dealII/447.dealII.test   957.00 958.00  0.1%
     test-suite...ternal/HMMER/hmmcalibrate.test    75.00  75.00  0.0%

    Same hash: 186 (filtered out)
    Remaining: 51
    Metric: loop-vectorize.LoopsAnalyzed

    Program                                        base    patch   diff
     test-suite...ks/Prolangs-C/agrep/agrep.test   440.00  434.00  -1.4%
     test-suite...nal/skidmarks10/skidmarks.test   312.00  308.00  -1.3%
     test-suite...marks/7zip/7zip-benchmark.test   6399.00 6323.00 -1.2%
     test-suite...lications/minisat/minisat.test   134.00  135.00   0.7%
     test-suite...rks/FreeBench/pifft/pifft.test   295.00  297.00   0.7%
     test-suite...TimberWolfMC/timberwolfmc.test   1879.00 1869.00 -0.5%
     test-suite...pplications/treecc/treecc.test   689.00  691.00   0.3%
     test-suite...T2000/300.twolf/300.twolf.test   1593.00 1597.00  0.3%
     test-suite.../Benchmarks/Bullet/bullet.test   1394.00 1392.00 -0.1%
     test-suite...ications/JM/ldecod/ldecod.test   1431.00 1429.00 -0.1%
     test-suite...6/464.h264ref/464.h264ref.test   2229.00 2230.00  0.0%
     test-suite...lications/sqlite3/sqlite3.test   2590.00 2589.00 -0.0%
     test-suite...ications/JM/lencod/lencod.test   2732.00 2733.00  0.0%
     test-suite...006/453.povray/453.povray.test   3395.00 3394.00 -0.0%

Note the -11% regression in number of loops vectorized for skidmarks. I
suspect this corresponds to the fact that those loops are gone now (see
the reduction in number of loops analyzed by LV).

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D88471
2021-01-26 13:52:30 +00:00
Florian Hahn
d596025713 [LoopRotate] Add PrepareForLTO stage, avoid rotating with inline cands.
D84108 exposed a bad interaction between inlining and loop-rotation
during regular LTO, which is causing notable regressions in at least
CINT2006/473.astar.

The problem boils down to: we now rotate a loop just before the vectorizer
which requires duplicating a function call in the preheader when compiling
the individual files ('prepare for LTO'). But this then prevents further
inlining of the function during LTO.

This patch tries to resolve this issue by making LoopRotate more
conservative with respect to rotating loops that have inline-able calls
during the 'prepare for LTO' stage.

I think this change intuitively improves the current situation in
general. Loop-rotate tries hard to avoid creating headers that are 'too
big'. At the moment, it assumes all inlining already happened and the
cost of duplicating a call is equal to just doing the call. But with LTO,
inlining also happens during full LTO and it is possible that a previously
duplicated call is actually a huge function which gets inlined
during LTO.

From the perspective of LV, not much should change overall. Most loops
calling user-provided functions won't get vectorized to start with
(unless we can infer that the function does not touch memory, has no
other side effects). If we do not inline the 'inline-able' call during
the LTO stage, we merely delayed loop-rotation & vectorization. If we
inline during LTO, chances should be very high that the inlined code is
itself vectorizable or the user call was not vectorizable to start with.

There could of course be scenarios where we inline a sufficiently large
function with code not profitable to vectorize, which would have be
vectorized earlier (by scalarzing the call). But even in that case,
there probably is no big performance impact, because it should be mostly
down to the cost-model to reject vectorization in that case. And then
the version with scalarized calls should also not be beneficial. In a way,
LV should have strictly more information after inlining and make more
accurate decisions (barring cost-model issues).

There is of course plenty of room for things to go wrong unexpectedly,
so we need to keep a close look at actual performance and address any
follow-up issues.

I took a look at the impact on statistics for
MultiSource/SPEC2000/SPEC2006. There are a few benchmarks with fewer
loops rotated, but no change to the number of loops vectorized.

Reviewed By: sanwou01

Differential Revision: https://reviews.llvm.org/D94232
2021-01-19 10:15:29 +00:00
Florian Hahn
1ba1b63d45 [SimplifyCFG] Enabled hoisting late in LTO pipeline.
bb7d3af1139c disabled hoisting in SimplifyCFG by default, but enabled it
late in the pipeline. But it appears as if the LTO pipelines got missed.

This patch adjusts the LTO pipelines to also enable hoisting in the
later stages.

Unfortunately there's no easy way to add a test for the change I think.

Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D93684
2021-01-04 16:26:58 +00:00
Yuanfang Chen
aa2b3e535c Fix LLVM_ENABLE_MODULES=On build
for commit 480936e741d588d53b9e2d9c5935b5daa0fdee25.
2020-12-30 10:54:04 -08:00
Andrew Litteken
cdd15bf157 [IRSim][IROutliner] Adding the extraction basics for the IROutliner.
Extracting the similar regions is the first step in the IROutliner.

Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
sort them by how many instructions will be removed.  Each
IRSimilarityCandidate is used to define an OutlinableRegion.  Each
region is ordered by their occurrence in the Module and the regions that
are not compatible with previously outlined regions are discarded.

Each region is then extracted with the CodeExtractor into its own
function.

We test that correctly extract in:
test/Transforms/IROutliner/extraction.ll
test/Transforms/IROutliner/address-taken.ll
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll

Recommit of bf899e891387d07dfd12de195ce2a16f62afd5e0 fixing memory
leaks.

Reviewers: paquette, jroelofs, yroux

Differential Revision: https://reviews.llvm.org/D86975
2020-12-17 11:27:26 -06:00
Florian Hahn
43edfa5357 [AnnotationRemarks] Also generate annotation remarks when using -O0.
The AnnotationRemarks pass is already run at the end of the module
pipeline. This patch also adds it before bailing out for -O0, so remarks
are also generated with -O0.
2020-12-15 14:46:52 +00:00
Zequan Wu
94ff08c70f [PGO] Enable preinline and cleanup when optimize for size
Differential Revision: https://reviews.llvm.org/D91673
2020-12-10 12:29:17 -08:00
Florian Hahn
4b1d72bba8 [ConstraintElimination] Tweak placement in pipeline.
This patch adds the ConstraintElimination pass to the LTO pipeline and
also runs it after SCCP in the function simplification pipeline.

This increases the number of cases we can elimination. Pending further
tuning.
2020-12-07 19:08:40 +00:00
Andrew Litteken
29b0588fca Revert "[IRSim][IROutliner] Adding the extraction basics for the IROutliner."
Reverting commit due to address sanitizer errors.

> Extracting the similar regions is the first step in the IROutliner.
> 
> Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
> sort them by how many instructions will be removed.  Each
> IRSimilarityCandidate is used to define an OutlinableRegion.  Each
> region is ordered by their occurrence in the Module and the regions that
> are not compatible with previously outlined regions are discarded.
> 
> Each region is then extracted with the CodeExtractor into its own
> function.
> 
> We test that correctly extract in:
> test/Transforms/IROutliner/extraction.ll
> test/Transforms/IROutliner/address-taken.ll
> test/Transforms/IROutliner/outlining-same-globals.ll
> test/Transforms/IROutliner/outlining-same-constants.ll
> test/Transforms/IROutliner/outlining-different-structure.ll
> 
> Reviewers: paquette, jroelofs, yroux
> 
> Differential Revision: https://reviews.llvm.org/D86975

This reverts commit bf899e891387d07dfd12de195ce2a16f62afd5e0.
2020-11-27 19:55:57 -06:00
Andrew Litteken
4300f34d01 [IRSim][IROutliner] Adding the extraction basics for the IROutliner.
Extracting the similar regions is the first step in the IROutliner.

Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
sort them by how many instructions will be removed.  Each
IRSimilarityCandidate is used to define an OutlinableRegion.  Each
region is ordered by their occurrence in the Module and the regions that
are not compatible with previously outlined regions are discarded.

Each region is then extracted with the CodeExtractor into its own
function.

We test that correctly extract in:
test/Transforms/IROutliner/extraction.ll
test/Transforms/IROutliner/address-taken.ll
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll

Reviewers: paquette, jroelofs, yroux

Differential Revision: https://reviews.llvm.org/D86975
2020-11-27 19:08:29 -06:00
Roman Lebedev
bb0e9c020e [PassManager] Run Induction Variable Simplification pass *after* Recognize loop idioms pass, not before
Currently, `-indvars` runs first, and then immediately after `-loop-idiom` does.
I'm not really sure if `-loop-idiom` requires `-indvars` to run beforehand,
but i'm *very* sure that `-indvars` requires `-loop-idiom` to run afterwards,
as it can be seen in the phase-ordering test.

LoopIdiom runs on two types of loops: countable ones, and uncountable ones.
For uncountable ones, IndVars obviously didn't make any change to them,
since they are uncountable, so for them the order should be irrelevant.
For countable ones, well, they should have been countable before IndVars
for IndVars to make any change to them, and since SCEV is used on them,
it shouldn't matter if IndVars have already canonicalized them.
So i don't really see why we'd want the current ordering.

Should this cause issues, it will give us a reproducer test case
that shows flaws in this logic, and we then could adjust accordingly.

While this is quite likely beneficial in-the-wild already,
it's a required part for the full motivational pattern
behind `left-shift-until-bittest` loop idiom (D91038).

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91800
2020-11-25 19:20:07 +03:00
Arthur Eubanks
f4f69878dc [NPM] Share pass building options with legacy PM
We should share options when possible.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D91741
2020-11-23 13:04:05 -08:00
Arthur Eubanks
2bf127ff66 [PGO] Make -disable-preinline work with NPM
Fixes cspgo_profile_summary.ll under NPM.

Reviewed By: xur

Differential Revision: https://reviews.llvm.org/D91826
2020-11-19 22:58:55 -08:00
Florian Hahn
e24d5bd069 Add pass to add !annotate metadata from @llvm.global.annotations.
This patch adds a new pass to add !annotation metadata for entries in
@llvm.global.anotations, which is generated  using
__attribute__((annotate("_name"))) on functions in Clang.

This has been discussed on llvm-dev as part of
    RFC: Combining Annotation Metadata and Remarks
    http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html

Reviewed By: thegameg

Differential Revision: https://reviews.llvm.org/D91195
2020-11-16 14:57:11 +00:00
Florian Hahn
041da6277f Add !annotation metadata and remarks pass.
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.

It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.

The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.

To motivate this, consider these specific questions we would like to get answered:

* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?

Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)

Reviewed By: thegameg, jdoerfert

Differential Revision: https://reviews.llvm.org/D91188
2020-11-13 13:24:10 +00:00
Sjoerd Meijer
2b47fb5801 [LoopFlatten] Run it earlier, just before IndVarSimplify
This is a prep step for widening induction variables in LoopFlatten if this is
posssible (D90640), to avoid having to perform certain overflow checks. Since
IndVarSimplify may already widen induction variables, we want to run
LoopFlatten just before IndVarSimplify. This is a minor reshuffle as both
passes were already close after each other.

Differential Revision: https://reviews.llvm.org/D90402
2020-11-10 20:22:41 +00:00
Sanne Wouda
d658430b9c Add loop distribution to the LTO pipeline
The LoopDistribute pass is missing from the LTO pipeline, so
-enable-loop-distribute has no effect during post-link. The pre-link
loop distribution doesn't seem to survive the LTO pipeline either.

With this patch (and -flto -mllvm -enable-loop-distribute) we see a 43%
uplift on SPEC 2006 hmmer for AArch64. The rest of SPECINT 2006 is
unaffected.

Differential Revision: https://reviews.llvm.org/D89896
2020-11-10 12:04:32 +00:00
Sanne Wouda
1cbe0dd7fb Revert "Add loop distribution to the LTO pipeline"
This reverts commit 6e80318eecde2639faa1e72be045c78b8b8aedad.
2020-11-03 19:29:27 +00:00
Sanne Wouda
4428a34963 Add loop distribution to the LTO pipeline
The LoopDistribute pass is missing from the LTO pipeline, so
-enable-loop-distribute has no effect during post-link. The pre-link
loop distribution doesn't seem to survive the LTO pipeline either.

With this patch (and -flto -mllvm -enable-loop-distribute) we see a 43%
uplift on SPEC 2006 hmmer for AArch64. The rest of SPECINT 2006 is
unaffected.

Differential Revision: https://reviews.llvm.org/D89896
2020-11-03 18:54:24 +00:00
Florian Hahn
125f3aa1f8 [Passes] Move ADCE before DSE & LICM.
The adjustment seems to have very little impact on optimizations.
The only binary change with -O3 MultiSource/SPEC2000/SPEC2006 on X86 is
in consumer-typeset and the size there actually decreases by -0.1%, with
not significant changes in the stats.

On its own, it is mildly positive in terms of compile-time, most likely
due to LICM & DSE having to process slightly less instructions. It
should also be unlikely that DSE/LICM make much new code dead.

http://llvm-compile-time-tracker.com/compare.php?from=df63eedef64d715ce1f31843f7de9c11fe1e597f&to=e3bdfcf94a9eeae6e006d010464f0c1b3550577d&stat=instructions

With DSE & MemorySSA, it gives some nice compile-time improvements, due
to the fact that DSE can re-use the PDT from ADCE, if it does not make
any changes:

http://llvm-compile-time-tracker.com/compare.php?from=15fdd6cd7c24c745df1bb419e72ff66fd138aa7e&to=481f494515fc89cb7caea8d862e40f2c910dc994&stat=instructions

Reviewed By: xbolva00

Differential Revision: https://reviews.llvm.org/D87322
2020-10-21 10:30:56 +01:00
Hans Wennborg
f6eeeaf04e Revert "[PM/CC1] Add -f[no-]split-cold-code CC1 option to toggle splitting"
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.

> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar

This reverts commit 273c299d5d649a0222fbde03c9a41e41913751b4.
2020-10-19 12:31:14 +02:00
Vedant Kumar
cce078ae12 [PM/CC1] Add -f[no-]split-cold-code CC1 option to toggle splitting
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).

To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.

Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
2020-10-15 23:13:33 +00:00
Roman Lebedev
09fdde59e8 [OldPM] Pass manager: run SROA after (simple) loop unrolling
I have stumbled into this pretty accidentally, when rewriting
some spaghetti-like code into something more structured,
which involved using some `std::array<>`s. And to my surprise,
the `alloca`s remained, causing about `+160%` perf regression.

https://llvm-compile-time-tracker.com/compare.php?from=bb6f4d32aac3eecb51909f4facc625219307ee68&to=d563e66f40f9d4d145cb2050e41cb961e2b37785&stat=instructions
suggests that this has geomean compile-time cost of `+0.08%`.

Note that D68593 / cecc0d27ad58c0aed8ef9ed99bbf691e137a0f26
already did this chage for NewPM, but left OldPM in a pessimized state.

This fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40011 | PR40011 ]], [[ https://bugs.llvm.org/show_bug.cgi?id=42794 | PR42794 ]] and probably some other reports.

Reviewed By: nikic, xbolva00

Differential Revision: https://reviews.llvm.org/D87972
2020-10-04 11:53:50 +03:00
Sjoerd Meijer
c208ece583 [LoopFlatten] Add a loop-flattening pass
This is a simple pass that flattens nested loops.  The intention is to optimise
loop nests like this, which together access an array linearly:

  for (int i = 0; i < N; ++i)
    for (int j = 0; j < M; ++j)
      f(A[i*M+j]);

into one loop:

  for (int i = 0; i < (N*M); ++i)
    f(A[i]);

It can also flatten loops where the induction variables are not used in the
loop. This can help with codesize and runtime, especially on simple cpus
without advanced branch prediction.

This is only worth flattening if the induction variables are only used in an
expression like i*M+j. If they had any other uses, we would have to insert a
div/mod to reconstruct the original values, so this wouldn't be profitable.

This partially fixes PR40581 as this pass triggers on one of the two cases. I
will follow up on this to learn LoopFlatten a few more (small) tricks. Please
note that LoopFlatten is not yet enabled by default.

Patch by Oliver Stannard, with minor tweaks from Dave Green and myself.

Differential Revision: https://reviews.llvm.org/D42365
2020-10-01 13:54:45 +01:00