We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
Often you have a unique_ptr<T> where T supports LLVM's
casting methods, and you wish to cast it to a unique_ptr<U>.
Prior to this patch, this requires doing hacky things like:
unique_ptr<U> Casted;
if (isa<U>(Orig.get()))
Casted.reset(cast<U>(Orig.release()));
This is overly verbose, and it would be nice to just be able
to use unique_ptr directly with cast and dyn_cast. To this end,
this patch updates cast<> to work directly with unique_ptr<T>,
so you can now write:
auto Casted = cast<U>(std::move(Orig));
Since it's possible for dyn_cast<> to fail, however, we choose
to use a slightly different API here, because it's awkward to
write
if (auto Casted = dyn_cast<U>(std::move(Orig))) {}
when Orig may end up not having been moved at all. So the
interface for dyn_cast is
if (auto Casted = unique_dyn_cast<U>(Orig)) {}
Where the inclusion of `unique` in the name of the cast operator
re-affirms that regardless of success of or fail of the casting,
exactly one of the input value and the return value will contain
a non-null result.
Differential Revision: https://reviews.llvm.org/D31890
llvm-svn: 300098
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Fill in omission of `cast_or_null<>` and `dyn_cast_or_null<>` for types
that wrap pointers (e.g., smart pointers).
Type traits need to be slightly stricter than for `cast<>` and
`dyn_cast<>` to resolve ambiguities with simple types.
There didn't seem to be any unit tests for pointer wrappers, so I tested
`isa<>`, `cast<>`, and `dyn_cast<>` while I was in there.
This only supports pointer wrappers with a conversion to `bool` to check
for null. If in the future it's useful to support wrappers without such
a conversion, it should be a straightforward incremental step to use the
`simplify_type` machinery for the null check. In that case, the unit
tests should be updated to remove the `operator bool()` from the
`pointer_wrappers::PTy`.
llvm-svn: 222644
We don't want cast and dyn_cast to work on temporaries. They don't extend
lifetime like a direct bind to a reference would, so they can introduce
hard to find bugs.
I added tests to make sure we don't regress this. Thanks to Eli Friedman for
noticing this and for his suggestions on how to test it.
llvm-svn: 186559
As far as simplify_type is concerned, there are 3 kinds of smart pointers:
* const correct: A 'const MyPtr<int> &' produces a 'const int*'. A
'MyPtr<int> &' produces a 'int *'.
* always const: Even a 'MyPtr<int> &' produces a 'const int*'.
* no const: Even a 'const MyPtr<int> &' produces a 'int*'.
This patch then does the following:
* Removes the unused specializations. Since they are unused, it is hard
to know which kind should be implemented.
* Make sure we don't drop const.
* Fix the default forwarding so that const correct pointer only need
one specialization.
* Simplifies the existing specializations.
llvm-svn: 178147
After cleaning up the following type hierarchies:
* TypeLoc: r175462
* SVal: r175594
* CFGElement: r175462
* ProgramPoint: r175812
that all invoked undefined behavior by causing a derived copy construction of a
base object through an invalid cast (thus supporting code that relied on
casting temporaries that were direct base objects) Clang/LLVM is now clean of
casts of temporaries. So here's some fun SFINAE machinery (courtesy of Eli
Friedman, with some porting back from C++11 to LLVM's traits by me) to cause
compile-time failures if llvm::cast & friends are ever passed an rvalue.
This should avoid a repeat of anything even remotely like PR14321/r168124.
Thanks to Jordan Rose for the help with the various Static Analyzer related
hierarchies that needed cleaning up, Eli for the SFINAE, Richard Smith, John
McCall, Ted Kremenek, and Anna Zaks for their input/reviews/patience along the
way.
llvm-svn: 175819
Additionally, all such cases are handled with no dynamic check.
All `classof()` of the form
class Foo {
[...]
static bool classof(const Bar *) { return true; }
[...]
}
where Foo is an ancestor of Bar are no longer necessary.
Don't write them!
Note: The exact test is `is_base_of<Foo, Bar>`, which is non-strict, so
that Foo is considered an ancestor of itself.
This leads to the following rule of thumb for LLVM-style RTTI:
The argument type of `classof()` should be a strict ancestor.
For more information about implementing LLVM-style RTTI, see
docs/HowToSetUpLLVMStyleRTTI.rst
llvm-svn: 165765
This silences several analyzer warnings within LLVM, and provides a slightly
nicer crash experience when someone calls isa<>, cast<>, or dyn_cast<> with
a null pointer.
llvm-svn: 164439
cast needs to adjust for a vtable pointer when going from base to
derived type (when the base doesn't have a vtable but the
derived type does).
llvm-svn: 95585
In order for the changes in r78424 to work properly, cast_retty<X,Y> should return an object instead of a reference, and it's not clear that this approach has real advantages.
llvm-svn: 79023
The use case is if you have a wrapper class:
class Base {
void *Ptr;
public:
Base() : Ptr(0) { }
operator bool() const { return Ptr; }
.....
}
and sub-wrappers that have exactly the same size:
class Sub : public Base {
public:
....
static bool classof(const Base*);
}
and in the code you would do:
void f(Base b) {
Sub sub = dyn_cast<Sub>(b);
if (sub) {
....
}
}
llvm-svn: 78424
NULL-based reference.
Note: Encountered this a few times on Tiger + gcc 4.0.1. Might just be a
platform-specific compiler issue, but it's good defensive programming in any
case.
llvm-svn: 59890
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
llvm-svn: 16137