This adds a Remark class that allows us to share code when working with
remarks.
The C API has been updated to reflect this. Instead of the parser
generating C structs, it's now using a C++ object that is used through
opaque pointers in C. This gives us much more flexibility on what
changes we can make to the internal state of the object and interacts
much better with scenarios where the library is used through dlopen.
* C API updates:
* move from C structs to opaque pointers and functions
* the remark type is now an enum instead of a string
* unit tests updates:
* use mostly the C++ API
* keep one test for the C API
* rename to YAMLRemarksParsingTest
* a typo was fixed: AnalysisFPCompute -> AnalysisFPCommute.
* a new error message was added: "expected a remark tag."
* llvm-opt-report has been updated to use the C++ parser instead of the
C API
Differential Revision: https://reviews.llvm.org/D59049
Original llvm-svn: 356491
llvm-svn: 356519
This adds a Remark class that allows us to share code when working with
remarks.
The C API has been updated to reflect this. Instead of the parser
generating C structs, it's now using a C++ object that is used through
opaque pointers in C. This gives us much more flexibility on what
changes we can make to the internal state of the object and interacts
much better with scenarios where the library is used through dlopen.
* C API updates:
* move from C structs to opaque pointers and functions
* the remark type is now an enum instead of a string
* unit tests updates:
* use mostly the C++ API
* keep one test for the C API
* rename to YAMLRemarksParsingTest
* a typo was fixed: AnalysisFPCompute -> AnalysisFPCommute.
* a new error message was added: "expected a remark tag."
* llvm-opt-report has been updated to use the C++ parser instead of the
C API
Differential Revision: https://reviews.llvm.org/D59049
llvm-svn: 356491
Summary:
GNU ar supports the 'N' count modifier for the extract (x) and delete (d) operations. When an archive contains multiple members with the same name, this can be used to extract (or delete) them individually. For example:
```
$ llvm-ar t archive.a
foo
foo
$ llvm-ar x archive.a
-> Writes foo twice, overwriting it the second time :( :(
$ llvm-ar xN 1 archive.a foo && mv foo foo.1
$ llvm-ar xN 2 archive.a foo && mv foo foo.2
-> Write foo twice, renaming it in between invocations to preserve all versions
```
Reviewers: ruiu, MaskRay
Reviewed By: ruiu, MaskRay
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59503
llvm-svn: 356466
As discovered in D56774 the command line gets to long, so use a response file
to give the script the libs. This change has been tested and is confirmed
working for me.
Commited on behalf of Jakob Bornecrantz.
Differential Revision: https://reviews.llvm.org/D56781
llvm-svn: 356443
This change makes linking into .build-id atomic and safe to use.
Some users under particular workflows are reporting that this races
more than half the time under particular conditions.
llvm-svn: 356404
This fixes the https://bugs.llvm.org/show_bug.cgi?id=40980.
Previously if string optimization occurred as a result of
StringTableBuilder's finalize() method, the size wasn't updated.
This hopefully also makes the interaction between sections during finalization
processes a bit more clear.
Differential revision: https://reviews.llvm.org/D59488
llvm-svn: 356371
Results in much nicer -help output:
```
$ ./bin/llvm-exegesis -help
USAGE: llvm-exegesis [options]
OPTIONS:
Color Options:
-color - Use colors in output (default=autodetect)
General options:
-enable-cse-in-irtranslator - Should enable CSE in irtranslator
-enable-cse-in-legalizer - Should enable CSE in Legalizer
Generic Options:
-help - Display available options (-help-hidden for more)
-help-list - Display list of available options (-help-list-hidden for more)
-version - Display the version of this program
llvm-exegesis analysis options:
-analysis-clustering-epsilon=<number> - dbscan epsilon for benchmark point clustering
-analysis-clusters-output-file=<string> -
-analysis-display-unstable-clusters - if there is more than one benchmark for an opcode, said benchmarks may end up not being clustered into the same cluster if the measured performance characteristics are different. by default all such opcodes are filtered out. this flag will instead show only such unstable opcodes
-analysis-inconsistencies-output-file=<string> -
-analysis-inconsistency-epsilon=<number> - epsilon for detection of when the cluster is different from the LLVM schedule profile values
-analysis-numpoints=<uint> - minimum number of points in an analysis cluster
llvm-exegesis benchmark options:
-ignore-invalid-sched-class - ignore instructions that do not define a sched class
-mode=<value> - the mode to run
=latency - Instruction Latency
=inverse_throughput - Instruction Inverse Throughput
=uops - Uop Decomposition
=analysis - Analysis
-num-repetitions=<uint> - number of time to repeat the asm snippet
-opcode-index=<int> - opcode to measure, by index
-opcode-name=<string> - comma-separated list of opcodes to measure, by name
-snippets-file=<string> - code snippets to measure
llvm-exegesis options:
-benchmarks-file=<string> - File to read (analysis mode) or write (latency/uops/inverse_throughput modes) benchmark results. “-” uses stdin/stdout.
-mcpu=<string> - cpu name to use for pfm counters, leave empty to autodetect
```
llvm-svn: 356364
yaml2obj currently derives the p_filesz, p_memsz, and p_offset values of
program headers from their sections. This makes writing tests for
certain formats more complex, and sometimes impossible. This patch
allows setting these fields explicitly, overriding the default value,
when relevant.
Reviewed by: jakehehrlich, Higuoxing
Differential Revision: https://reviews.llvm.org/D59372
llvm-svn: 356247
For ELF, we accept but ignore --only-keep-debug. Do the same for llvm-strip.
COFF does implement this, so update the test that it is supported.
llvm-svn: 356207
Summary:
CoverageExporterJson::renderFiles accounts for most of the execution time given a large profdata file with multiple binaries.
Proposed solution is to generate JSON for each file in parallel and sort at the end to preserve deterministic output. Also added flags to skip generating parts of the output to trim the output size.
Patch by Sajjad Mirza (@sajjadm).
Reviewers: Dor1s, vsk
Reviewed By: Dor1s, vsk
Subscribers: liaoyuke, mgrang, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59277
llvm-svn: 356178
This patch changes llvm-objcopy's behaviour to not strip sections that
are in segments, if they otherwise would be due to a stripping operation
(--strip-all, --strip-sections, --strip-non-alloc). This preserves the
segment contents. It does not change the behaviour of --strip-all-gnu
(although we could choose to do so), because GNU objcopy's behaviour in
this case seems to be to strip the section, nor does it prevent removing
of sections in segments with --remove-section (if a user REALLY wants to
remove a section, we should probably let them, although I could be
persuaded that warning might be appropriate). Tests have been added to
show this latter behaviour.
This fixes https://bugs.llvm.org/show_bug.cgi?id=41006.
Reviewed by: grimar, rupprecht, jakehehrlich
Differential Revision: https://reviews.llvm.org/D59293
This is a reland of r356129, attempting to fix greendragon failures
due to a suspected compatibility issue with od on the greendragon bots
versus other versions.
llvm-svn: 356136
This patch changes llvm-objcopy's behaviour to not strip sections that
are in segments, if they otherwise would be due to a stripping operation
(--strip-all, --strip-sections, --strip-non-alloc). This preserves the
segment contents. It does not change the behaviour of --strip-all-gnu
(although we could choose to do so), because GNU objcopy's behaviour in
this case seems to be to strip the section, nor does it prevent removing
of sections in segments with --remove-section (if a user REALLY wants to
remove a section, we should probably let them, although I could be
persuaded that warning might be appropriate). Tests have been added to
show this latter behaviour.
This fixes https://bugs.llvm.org/show_bug.cgi?id=41006.
Reviewed by: grimar, rupprecht, jakehehrlich
Differential Revision: https://reviews.llvm.org/D59293
llvm-svn: 356129
error() was previously cleaned up from CopyConfig, but new uses were introduced.
This also tweaks the error message for --add-symbol to report all invalid flags.
llvm-svn: 356105
Summary:
MsgPackDocument is the lighter-weight replacement for MsgPackTypes. This
commit switches AMDGPU HSA metadata processing to use MsgPackDocument
instead of MsgPackTypes.
Differential Revision: https://reviews.llvm.org/D57024
Change-Id: I0751668013abe8c87db01db1170831a76079b3a6
llvm-svn: 356081
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
Prior to this change, the "Symbol" field of a relocation would always be
assumed to be a symbol name, and if no such symbol existed, the
relocation would reference index 0. This confused me when I tried to use
a literal symbol index in the field: since "0x1" was not a known symbol
name, the symbol index was set as 0. This change falls back to treating
unknown symbol names as integers, and emits an error if the name is not
found and the string is not an integer.
Note that the Symbol field is optional, so if a relocation doesn't
reference a symbol, it shouldn't be specified. The new error required a
number of test updates.
Reviewed by: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D58510
llvm-svn: 355938
Summary:
Swift now generates PDBs for debugging on Windows. llvm and lldb
need a language enumerator value too properly handle the output
emitted by swiftc.
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59231
llvm-svn: 355882
When --compress-debug-sections is given,
llvm-objcopy removes the uncompressed sections and adds compressed to the section list.
This makes all the pointers to old sections to be outdated.
Currently, code already has logic for replacing the target sections of the relocation
sections. But we also have to update the relocations by themselves.
This fixes https://bugs.llvm.org/show_bug.cgi?id=40885.
Differential revision: https://reviews.llvm.org/D58960
llvm-svn: 355821
Specifically, compute and Print Type and Section columns.
This is a re-commit of rL354833, after fixing the Asan problem found a a buildbot.
Differential Revision: https://reviews.llvm.org/D59060
llvm-svn: 355742
llvm-readelf prints relocation addends as:
<symbol value>[+-]<absolute addend>
where [+-] is determined from whether addend is less than zero or not.
However, it does not print the +/- if there is no symbol, which meant
that negative addends became their positive value with no indication
that this had happened. This patch stops the absolute conversion when
addends are negative and there is no associated symbol.
Reviewed by: Higuoxing, mattd, MaskRay
Differential Revision: https://reviews.llvm.org/D59095
llvm-svn: 355696
Summary:
Since bottleneck hints are enabled via user request, it can be
confusing if no bottleneck information is presented. Such is the
case when no bottlenecks are identified. This patch emits a message
in that case.
Reviewers: andreadb
Reviewed By: andreadb
Subscribers: tschuett, gbedwell, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59098
llvm-svn: 355628
I need this to remove a binary from LLD test suite.
The patch also simplifies the code a bit.
Differential revision: https://reviews.llvm.org/D59082
llvm-svn: 355591
This allows us to store more info about where we're emitting the remarks
without cluttering LLVMContext. This is needed for future support for
the remark section.
Differential Revision: https://reviews.llvm.org/D58996
Original llvm-svn: 355507
llvm-svn: 355514
This allows us to store more info about where we're emitting the remarks
without cluttering LLVMContext. This is needed for future support for
the remark section.
Differential Revision: https://reviews.llvm.org/D58996
llvm-svn: 355507
We should create CompressedSection only if the section has SHF_COMPRESSED flag
or it's name starts from '.zdebug'.
Currently, we create it if section's data starts from ZLIB signature.
Differential revision: https://reviews.llvm.org/D59018
llvm-svn: 355501
Partly addresses PR15026.
There are a few tests that passed in invalid architectures, which are fixed in: rL355349 and D58931
Reviewers: echristo, efriedma, rengolin, atrick
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D58933
llvm-svn: 355455
Getting rid of the name "optimization remarks" for anything that
involves handling remarks on the client side.
It's safer to do this now, before we get stuck with that name in all the
APIs and public interfaces we decide to export to users in the future.
This renames llvm/tools/opt-remarks to llvm/tools/remarks-shlib, and now
generates `libRemarks.dylib` instead of `libOptRemarks.dylib`.
Differential Revision: https://reviews.llvm.org/D58535
llvm-svn: 355439
When --compress-debug-sections is given, llvm-objcopy do not compress
sections that have "ZLIB" header in data. Normally this signature is used
in zlib-gnu compression format. But if zlib-gnu used then the name of the compressed
section should start from .z* (e.g .zdebug_info). If it does not, then it is not
a zlib-gnu format and section should be treated as a normal uncompressed section.
Differential revision: https://reviews.llvm.org/D58908
llvm-svn: 355399
If zlib is not available, and --compress-debug-sections is passed,
we want to report an error. Currently, it is only reported for
--compress_debug_sections= form of the option.
Fixes the https://bugs.llvm.org/show_bug.cgi?id=40886.
I do not think there is a way to write a test for this.
Differential revision: https://reviews.llvm.org/D58909
llvm-svn: 355391
This patch adds a new flag named -bottleneck-analysis to print out information
about throughput bottlenecks.
MCA knows how to identify and classify dynamic dispatch stalls. However, it
doesn't know how to analyze and highlight kernel bottlenecks. The goal of this
patch is to teach MCA how to correlate increases in backend pressure to backend
stalls (and therefore, the loss of throughput).
From a Scheduler point of view, backend pressure is a function of the scheduler
buffer usage (i.e. how the number of uOps in the scheduler buffers changes over
time). Backend pressure increases (or decreases) when there is a mismatch
between the number of opcodes dispatched, and the number of opcodes issued in
the same cycle. Since buffer resources are limited, continuous increases in
backend pressure would eventually leads to dispatch stalls. So, there is a
strong correlation between dispatch stalls, and how backpressure changed over
time.
This patch teaches how to identify situations where backend pressure increases
due to:
- unavailable pipeline resources.
- data dependencies.
Data dependencies may delay execution of instructions and therefore increase the
time that uOps have to spend in the scheduler buffers. That often translates to
an increase in backend pressure which may eventually lead to a bottleneck.
Contention on pipeline resources may also delay execution of instructions, and
lead to a temporary increase in backend pressure.
Internally, the Scheduler classifies instructions based on whether register /
memory operands are available or not.
An instruction is marked as "ready to execute" only if data dependencies are
fully resolved.
Every cycle, the Scheduler attempts to execute all instructions that are ready
to execute. If an instruction cannot execute because of unavailable pipeline
resources, then the Scheduler internally updates a BusyResourceUnits mask with
the ID of each unavailable resource.
ExecuteStage is responsible for tracking changes in backend pressure. If backend
pressure increases during a cycle because of contention on pipeline resources,
then ExecuteStage sends a "backend pressure" event to the listeners.
That event would contain information about instructions delayed by resource
pressure, as well as the BusyResourceUnits mask.
Note that ExecuteStage also knows how to identify situations where backpressure
increased because of delays introduced by data dependencies.
The SummaryView observes "backend pressure" events and prints out a "bottleneck
report".
Example of bottleneck report:
```
Cycles with backend pressure increase [ 99.89% ]
Throughput Bottlenecks:
Resource Pressure [ 0.00% ]
Data Dependencies: [ 99.89% ]
- Register Dependencies [ 0.00% ]
- Memory Dependencies [ 99.89% ]
```
A bottleneck report is printed out only if increases in backend pressure
eventually caused backend stalls.
About the time complexity:
Time complexity is linear in the number of instructions in the
Scheduler::PendingSet.
The average slowdown tends to be in the range of ~5-6%.
For memory intensive kernels, the slowdown can be significant if flag
-noalias=false is specified. In the worst case scenario I have observed a
slowdown of ~30% when flag -noalias=false was specified.
We can definitely recover part of that slowdown if we optimize class LSUnit (by
doing extra bookkeeping to speedup queries). For now, this new analysis is
disabled by default, and it can be enabled via flag -bottleneck-analysis. Users
of MCA as a library can enable the generation of pressure events through the
constructor of ExecuteStage.
This patch partially addresses https://bugs.llvm.org/show_bug.cgi?id=37494
Differential Revision: https://reviews.llvm.org/D58728
llvm-svn: 355308