by the recently committed rlwimi.ll test file. Also commit initial code
for bitfield extract, although it is turned off until fully debugged.
llvm-svn: 17207
* Convert register numbers from their opcode value to the real value, e.g.
PPC::R1 => 1 and PPC::F1 => 1
* Add correct handling of loading of global values which are PC-relative --
implement ha16() and lo16()
llvm-svn: 17190
be listed second as that is how the instructions are usually created (and is the
correct asm syntax) so that it's assembled correctly from its constituents
llvm-svn: 17183
The decimal value given in the manual (8 or 9) really needs to be multiplied by
a factor of 32 because of the group of 5 zero bits after the register code.
llvm-svn: 17182
as the shift amount operand to a shift instruction. This was causing us to
emit unnecessary clear operations for code such as:
int foo(int x) { return 1 << x; }
llvm-svn: 17175
including registers, constants, and partial support for global addresses
* The JIT is disabled by default to allow building llvm-gcc, which wants to test
running programs during configure
llvm-svn: 17149
Instead of unconditionally copying all phi node values into temporaries for
all successor blocks, generate code that will determine what successor
block will be called and then copy only those phi node values needed by
the successor block.
This seems to cut down namd execution time from being 8% higher than GCC to
4% higher than GCC.
llvm-svn: 17144
- Support added for functions, basic blocks, constant pool, constants,
registers, and some basic support for globals, all untested
* Turn assert()s into abort()s so that unimplemented functions fail in release
llvm-svn: 17143
double %test(uint %X) {
%tmp.1 = cast uint %X to double ; <double> [#uses=1]
ret double %tmp.1
}
into:
test:
sub %ESP, 8
mov %EAX, DWORD PTR [%ESP + 12]
mov %ECX, 0
mov DWORD PTR [%ESP], %EAX
mov DWORD PTR [%ESP + 4], %ECX
fild QWORD PTR [%ESP]
add %ESP, 8
ret
... which basically zero extends to 8 bytes, then does an fild for an
8-byte signed int.
Now we generate this:
test:
sub %ESP, 4
mov %EAX, DWORD PTR [%ESP + 8]
mov DWORD PTR [%ESP], %EAX
fild DWORD PTR [%ESP]
shr %EAX, 31
fadd DWORD PTR [.CPItest_0 + 4*%EAX]
add %ESP, 4
ret
.section .rodata
.align 4
.CPItest_0:
.quad 5728578726015270912
This does a 32-bit signed integer load, then adds in an offset if the sign
bit of the integer was set.
It turns out that this is substantially faster than the preceeding sequence.
Consider this testcase:
unsigned a[2]={1,2};
volatile double G;
void main() {
int i;
for (i=0; i<100000000; ++i )
G += a[i&1];
}
On zion (a P4 Xeon, 3Ghz), this patch speeds up the testcase from 2.140s
to 0.94s.
On apoc, an athlon MP 2100+, this patch speeds up the testcase from 1.72s
to 1.34s.
Note that the program takes 2.5s/1.97s on zion/apoc with GCC 3.3 -O3
-fomit-frame-pointer.
llvm-svn: 17083
%X = and Y, constantint
%Z = setcc %X, 0
instead of emitting:
and %EAX, 3
test %EAX, %EAX
je .LBBfoo2_2 # UnifiedReturnBlock
We now emit:
test %EAX, 3
je .LBBfoo2_2 # UnifiedReturnBlock
This triggers 581 times on 176.gcc for example.
llvm-svn: 17080
1. optional shift left
2. and x, immX
3. and y, immY
4. or z, x, y
==> rlwimi z, x, y, shift, mask begin, mask end
where immX == ~immY and immX is a run of set bits. This transformation
fires 32 times on voronoi, once on espresso, and probably several
dozen times on external benchmarks such as gcc.
To put this in terms of actual code generated for
struct B { unsigned a : 3; unsigned b : 2; };
void storeA (struct B *b, int v) { b->a = v;}
void storeB (struct B *b, int v) { b->b = v;}
Old:
_storeA:
rlwinm r2, r4, 0, 29, 31
lwz r4, 0(r3)
rlwinm r4, r4, 0, 0, 28
or r2, r4, r2
stw r2, 0(r3)
blr
_storeB:
rlwinm r2, r4, 3, 0, 28
rlwinm r2, r2, 0, 27, 28
lwz r4, 0(r3)
rlwinm r4, r4, 0, 29, 26
or r2, r2, r4
stw r2, 0(r3)
blr
New:
_storeA:
lwz r2, 0(r3)
rlwimi r2, r4, 0, 29, 31
stw r2, 0(r3)
blr
_storeB:
lwz r2, 0(r3)
rlwimi r2, r4, 3, 27, 28
stw r2, 0(r3)
blr
llvm-svn: 17078