Rename SDOperandImpl back to SDOperand.
Introduce the SDUse class that represents a use of the SDNode referred by
an SDOperand. Now it is more similar to Use/Value classes.
Patch is approved by Dan Gohman.
llvm-svn: 49795
memcpy lowering code; this ensures that the size node has the desired
result type. This fixes a regression from r49572 with @llvm.memcpy.i64
on x86-32.
llvm-svn: 49761
optimized x86-64 (and x86) calls so that they work (... at least for
my test cases).
Should fix the following problems:
Problem 1: When i introduced the optimized handling of arguments for
tail called functions (using a sequence of copyto/copyfrom virtual
registers instead of always lowering to top of the stack) i did not
handle byval arguments correctly e.g they did not work at all :).
Problem 2: On x86-64 after the arguments of the tail called function
are moved to their registers (which include ESI/RSI etc), tail call
optimization performs byval lowering which causes xSI,xDI, xCX
registers to be overwritten. This is handled in this patch by moving
the arguments to virtual registers first and after the byval lowering
the arguments are moved from those virtual registers back to
RSI/RDI/RCX.
llvm-svn: 49584
on any current target and aren't optimized in DAGCombiner. Instead
of using intermediate nodes, expand the operations, choosing between
simple loads/stores, target-specific code, and library calls,
immediately.
Previously, the code to emit optimized code for these operations
was only used at initial SelectionDAG construction time; now it is
used at all times. This fixes some cases where rep;movs was being
used for small copies where simple loads/stores would be better.
This also cleans up code that checks for alignments less than 4;
let the targets make that decision instead of doing it in
target-independent code. This allows x86 to use rep;movs in
low-alignment cases.
Also, this fixes a bug that resulted in the use of rep;stos for
memsets of 0 with non-constant memory size when the alignment was
at least 4. It's better to use the library in this case, which
can be significantly faster when the size is large.
This also preserves more SourceValue information when memory
intrinsics are lowered into simple loads/stores.
llvm-svn: 49572
MOVZQI2PQIrr. This would be better handled as a dag combine
(with the goal of eliminating the bitconvert) but I don't know
how to do that safely. Thoughts welcome.
llvm-svn: 49463
review feedback.
-enable-eh is still accepted but doesn't do anything.
EH intrinsics use Dwarf EH if the target supports that,
and are handled by LowerInvoke otherwise.
The separation of the EH table and frame move data is,
I think, logically figured out, but either one still
causes full EH info to be generated (not sure how to
split the metadata correctly).
MachineModuleInfo::needsFrameInfo is no longer used and
is removed.
llvm-svn: 49064
not marked nounwind, or for all functions when -enable-eh
is set, provided the target supports Dwarf EH.
llvm-gcc generates nounwind in the right places; other FEs
will need to do so also. Given such a FE, -enable-eh should
no longer be needed.
llvm-svn: 49006