trip counts that use signed comparisons. It's not obviously the best
approach for preserving trip count information, and at any rate there
isn't anything in the tree right now that makes use of that, so for
now always using zero-extensions is preferable.
llvm-svn: 65347
as legality. Make load sinking and gep sinking more careful: we only
do it when it won't pessimize loads from the stack. This has the added
benefit of not producing code that is unanalyzable to SROA.
llvm-svn: 65209
reduction of address calculations down to basic pointer arithmetic.
This is currently off by default, as it needs a few other features
before it becomes generally useful. And even when enabled, full
strength reduction is only performed when it doesn't increase
register pressure, and when several other conditions are true.
This also factors out a bunch of exisiting LSR code out of
StrengthReduceStridedIVUsers into separate functions, and tidies
up IV insertion. This actually decreases register pressure even
in non-superhero mode. The change in iv-users-in-other-loops.ll
is an example of this; there are two more adds because there are
two fewer leas, and there is less spilling.
llvm-svn: 65108
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
llvm-svn: 64918
are multiple IV's in a loop, some of them may under go signed
or unsigned wrapping even if the IV that's used in the loop
exit condition doesn't. Restrict sign-extension-elimination
and zero-extension-elimination to only those that operate on
the original loop-controlling IV.
llvm-svn: 64866
Enhance instcombine to use the preferred field of
GetOrEnforceKnownAlignment in more cases, so that regular IR operations are
optimized in the same way that the intrinsics currently are.
llvm-svn: 64623
- Test for signed and unsigned wrapping conditions, instead of just
testing for non-negative induction ranges.
- Handle loops with GT comparisons, in addition to LT comparisons.
- Support more cases of induction variables that don't start at 0.
llvm-svn: 64532
Make sure the SCC pass manager initializes any contained
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
llvm-svn: 64443
loop induction on LP64 targets. When the induction variable is
used in addressing, IndVars now is usually able to inserst a
64-bit induction variable and eliminates the sign-extending cast.
This is also useful for code using C "short" types for
induction variables on targets with 32-bit addressing.
Inserting a wider induction variable is easy; the tricky part is
determining when trunc(sext(i)) expressions are no-ops. This
requires range analysis of the loop trip count. A common case is
when the original loop iteration starts at 0 and exits when the
induction variable is signed-less-than a fixed value; this case
is now handled.
This replaces IndVarSimplify's OptimizeCanonicalIVType. It was
doing the same optimization, but it was limited to loops with
constant trip counts, because it was running after the loop
rewrite, and the information about the original induction
variable is lost by that point.
Rename ScalarEvolution's executesAtLeastOnce to
isLoopGuardedByCond, generalize it to be able to test for
ICMP_NE conditions, and move it to be a public function so that
IndVars can use it.
llvm-svn: 64407
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
llvm-svn: 64300
accessed at least once as a vector. This prevents it from
compiling the example in not-a-vector into:
define double @test(double %A, double %B) {
%tmp4 = insertelement <7 x double> undef, double %A, i32 0
%tmp = insertelement <7 x double> %tmp4, double %B, i32 4
%tmp2 = extractelement <7 x double> %tmp, i32 4
ret double %tmp2
}
instead, producing the integer code. Producing vectors when they
aren't otherwise in the program is dangerous because a lot of other
code treats them carefully and doesn't want to break them down.
OTOH, many things want to break down tasty i448's.
llvm-svn: 63638