structure that represents a mapping without any dependencies on SubRegIndex
numbering.
This brings us closer to being able to remove the explicit SubRegIndex
numbering, and it is now possible to specify any mapping without inventing
*_INVALID register classes.
llvm-svn: 104563
This is the beginning of purely symbolic subregister indices, but we need a bit
of jiggling before the explicit numeric indices can be completely removed.
llvm-svn: 104492
that are aliases of the specified register.
- Rename modifiesRegister to definesRegister since it's looking a def of the
specific register or one of its super-registers. It's not looking for def of a
sub-register or alias that could change the specified register.
- Added modifiesRegister to look for defs of aliases.
llvm-svn: 104377
reads or writes a register.
This takes partial redefines and undef uses into account.
Don't actually use it yet. That caused miscompiles.
llvm-svn: 104372
If the size of the string is greater than the zero fill size, the function will attempt to write a very large string of zeros to the object file (~4GB on 32 bit platforms). This assertion will catch the scenario and crash the program before the write occurs.
llvm-svn: 104334
isn't ideal if we want to be able to use another object file format.
Add a createObjectStreamer() factory method so that the correct object
file streamer can be instantiated for a given target triple.
llvm-svn: 104318
pipeline stall. It's useful for targets like ARM cortex-a8. NEON has a lot
of long latency instructions so a strict register pressure reduction
scheduler does not work well.
Early experiments show this speeds up some NEON loops by over 30%.
llvm-svn: 104216
partial redefines.
We are going to treat a partial redefine of a virtual register as a
read-modify-write:
%reg1024:6 = OP
Unless the register is fully clobbered:
%reg1024:6 = OP, %reg1024<imp-def>
MachineInstr::readsVirtualRegister() knows the difference. The first case is a
read, the second isn't.
llvm-svn: 104149
- Of questionable utility, since in general anything which wants to do this should probably be within a target specific hook, which can rely on the sections being of the appropriate type. However, it can be useful for short term hacks.
llvm-svn: 103980
variable has not yet been used in an expression. This allows us to support a few
cases that show up in real code (mostly because gcc generates it for Objective-C
on Darwin), without giving up a reasonable semantic model for assignment.
llvm-svn: 103950
instructions.
e.g.
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1027<def> = EXTRACT_SUBREG %reg1026, 6
%reg1028<def> = EXTRACT_SUBREG %reg1026<kill>, 5
...
%reg1029<def> = REG_SEQUENCE %reg1028<kill>, 5, %reg1027<kill>, 6, %reg1028, 7, %reg1027, 8, %reg1028, 9, %reg1027, 10, %reg1030<kill>, 11, %reg1032<kill>, 12
After REG_SEQUENCE is eliminated, we are left with:
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
%reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
The regular coalescer will not be able to coalesce reg1026 and reg1029 because it doesn't
know how to combine sub-register indices 5 and 6. Now 2-address pass will consult the
target whether sub-registers 5 and 6 of reg1026 can be combined to into a larger
sub-register (or combined to be reg1026 itself as is the case here). If it is possible,
it will be able to replace references of reg1026 with reg1029 + the larger sub-register
index.
llvm-svn: 103835
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
llvm-svn: 103802