IntegersSubset devided into IntegersSubsetGeneric and into IntegersSubset itself. The first has no references to ConstantInt and works with IntItem only.
IntegersSubsetMapping also made generic. Here added second template parameter "IntegersSubsetTy" that allows to use on of two IntegersSubset types described below.
llvm-svn: 157815
IntItem cleanup. IntItemBase, IntItemConstantIntImp and IntItem merged into IntItem. All arithmetic operators was propogated from APInt. Also added comparison operators <,>,<=,>=. Currently you will find set of macros that propogates operators from APInt to IntItem in the beginning of IntegerSubset. Note that THESE MACROS WILL REMOVED after all passes will case-ranges compatible. Also note that these macros much smaller pain that something like this:
if (V->getValue().ugt(AnotherV->getValue()) { ... }
These changes made IntItem full featured integer object. It allows to make IntegerSubset class generic (move out all ConstantInt references inside and add unit-tests) in next commits.
llvm-svn: 157810
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
Reg-units are named after their root registers, and most units have a
single root, so they simply print as 'AL', 'XMM0', etc. The rare dual
root reg-units print as FPSCR~FPSCR_NZCV, FP0~ST7, ...
The printing piggybacks on the existing register name tables, so no
extra const data space is required.
llvm-svn: 157754
Each register unit has one or two root registers. The full set of
registers containing a given register unit can be computed as the union
of the root registers and their super-registers.
Provide an MCRegUnitRootIterator class to enumerate the roots.
llvm-svn: 157753
This also required making recursive simplifications until
nothing changes or a hard limit (currently 3) is hit.
With the simplification in place indvars can canonicalize
loops of the form
for (unsigned i = 0; i < a-b; ++i)
into
for (unsigned i = 0; i != a-b; ++i)
which used to fail because SCEV created a weird umax expr
for the backedge taken count.
llvm-svn: 157701
Also add subclasses MCSubRegIterator, MCSuperRegIterator, and
MCRegAliasIterator.
These iterators provide an abstract interface to the MCRegisterInfo
register lists so the internal representation can be changed without
changing all clients.
llvm-svn: 157695
Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
llvm-svn: 157655
The register unit lists are typically much shorter than the register
overlap lists, and the backing table for register units has better cache
locality because it is smaller.
This makes llc about 0.5% faster. The regsOverlap() function isn't that hot.
llvm-svn: 157651
Register units are already used internally in TableGen to compute
register pressure sets and overlapping registers. This patch makes them
available to the code generators.
The register unit lists are differentially encoded so they can be reused
for many related registers. This keeps the total size of the lists below
200 bytes for most targets. ARM has the largest table at 560 bytes.
Add an MCRegUnitIterator for traversing the register unit lists. It
provides an abstract interface so the representation can be changed in
the future without changing all clients.
llvm-svn: 157650
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
llvm-svn: 157634
Attribute bits above 1<<30 are now encoded correctly. Additionally,
the encoding/decoding functionality has been hoisted to helper functions
in Attributes.h in an effort to help the encoding/decoding to stay in
sync with the Attribute bitcode definitions.
llvm-svn: 157581
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
llvm-svn: 157576
The only missing part is insert(), which uses a pair of parameters and I haven't
figured out how to convert it to rvalue references. It's now possible to use a
DenseMap with std::unique_ptr values :)
llvm-svn: 157539
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
The Hazard checker implements in-order contraints, or interlocked
resources. Ready instructions with hazards do not enter the available
queue and are not visible to other heuristics.
The major code change is the addition of SchedBoundary to encapsulate
the state at the top or bottom of the schedule, including both a
pending and available queue.
The scheduler now counts cycles in sync with the hazard checker. These
are minimum cycle counts based on known hazards.
Targets with no itinerary (x86_64) currently remain at cycle 0. To fix
this, we need to provide some maximum issue width for all targets. We
also need to add the concept of expected latency vs. minimum latency.
llvm-svn: 157427