This is a safeguard against data loss if the user specifies a directory
that is not a cache directory. Teach the existing cache pruning clients
to create files with appropriate names.
Differential Revision: https://reviews.llvm.org/D31109
llvm-svn: 298271
This is an ELF-specific thing that adds SHF_LINK_ORDER to the global's section
pointing to the metadata argument's section. The effect of that is a reverse dependency
between sections for the linker GC.
!associated does not change the behavior of global-dce. The global
may also need to be added to llvm.compiler.used.
Since SHF_LINK_ORDER is per-section, !associated effectively enables
fdata-sections for the affected globals, the same as comdats do.
Differential Revision: https://reviews.llvm.org/D29104
llvm-svn: 298157
This set may affect code generation and is sensitive to link order (and
possibly in the future to the linker's choice of prevailing symbol), so we
need to include it.
Differential Revision: https://reviews.llvm.org/D30586
llvm-svn: 296907
A line number doesn't make much sense if you don't say where it's
from. Add a verifier check for this and update some tests that had
bogus debug info.
llvm-svn: 295516
until we can get better TargetMachine::isCompatibleDataLayout to compare - otherwise
we can't code generate existing bitcode without a string equality data layout.
This reverts commit r294702.
llvm-svn: 294709
For other platforms we should find out what they need and likely
make the same change, however, a smaller additional change is easier
for platforms we know have it specified in the ABI. As part of this
rewrite some of the handling in the backends for data layout and update
a bunch of testcases.
Based on a patch by Simonas Kazlauskas!
llvm-svn: 294702
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293918
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
Summary:
Allow non-ODR weak/linkonce non-prevailing copies to be marked
as available_externally in the index. Add support for dropping these to
declarations in the backend.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28806
llvm-svn: 292656
CFI is using intrinsics that takes MDString as arguments, and this
was broken during lazy-loading of metadata.
Differential Revision: https://reviews.llvm.org/D28916
llvm-svn: 292641
Summary:
Without this, we're stressing the RAUW of unique nodes,
which is a costly operation. This is intended to limit
the number of RAUW, and is very effective on the total
link-time of opt with ThinLTO, before:
real 4m4.587s user 15m3.401s sys 0m23.616s
after:
real 3m25.261s user 12m22.132s sys 0m24.152s
Reviewers: tejohnson, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28751
llvm-svn: 292420
Summary:
We can sometimes end up with multiple copies of a local function that
have the same GUID in the index. This happens when there are local
functions with the same name that are in different source files with the
same name (but in different directories), and they were compiled in
their own directory so had the same path at compile time.
In this case make sure we import the copy in the caller's module. While
it isn't a correctness problem (the renamed reference which is based on the
module IR hash will be unique since the module must have had an
externally visible function that was imported), importing the wrong copy
will result in lost performance opportunity since it won't be referenced
and inlined.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28440
llvm-svn: 291841
Summary:
The issue happens with:
%0 = ....., !tbaa !0
%1 = ....., !tbaa !1
With !0 that references !1.
In this case when loading !0 we generates a temporary for the
operand !1. We now flush it immediately and trigger the load of
!1 before moving on. If we don't we get the temporary when
attaching to %1. This is usually not an issue except that we
eagerly try to update TBAA MDNodes, which is obviously not possible
if we only have a temporary.
Differential Revision: https://reviews.llvm.org/D28423
llvm-svn: 291362
Summary:
r285871 introduced an assert that was overly aggressive in the case
of a same-named local in different same-named files (in different
directories), where the source name and therefore the GUID ended up
the same because the files were compiled in their own directory without
any leading path. Change the handling in the promotion logic to get
the summary for the version in that module.
This also exposed an issue where we are not always importing the
right copy, which is a performance not correctness issue (because
the renaming is based on the module hash which must be different,
see the bug report for details). I will fix that as a follow-on.
Fixes PR31561.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28411
llvm-svn: 291304
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Summary:
This is a relatively simple scheme: we use the index emitted in the
bitcode to avoid loading all the global metadata. Instead we load
the index with their position in the bitcode so that we can load each
of them individually. Materializing the global metadata block in this
condition only triggers loading the named metadata, and the ones
referenced from there (transitively). When materializing a function,
metadata from the global block are loaded lazily as they are
referenced.
Two main current limitations are:
1) Global values other than functions are not materialized on demand,
so we need to eagerly load METADATA_GLOBAL_DECL_ATTACHMENT records
(and their transitive dependencies).
2) When we load a single metadata, we don't recurse on the operands,
instead we use a placeholder or a temporary metadata. Unfortunately
tepmorary nodes are very expensive. This is why we don't have it
always enabled and only for importing.
These two limitations can be lifted in a subsequent improvement if
needed.
With this change, the total link time of opt with ThinLTO and Debug
Info enabled is going down from 282s to 224s (~20%).
Reviewers: pcc, tejohnson, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28113
llvm-svn: 291027
Summary:
Change llvm-link to use the FunctionImporter handling, instead of
manually invoking the Linker. We still need to load the module
in llvm-link to do the desired testing for invalid import requests
(weak functions), and to get the GUID (in case the function is local).
Also change the drop-debug-info test to use llvm-link so that importing
is forced (in order to test debug info handling) and independent of
import logic changes.
Reviewers: mehdi_amini
Subscribers: mgorny, llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D28277
llvm-svn: 290964
I remove one extra line, but because annoyingly llvm-lit does not
clean the output directory before running the test, it didn't fail
locally (the file was present from a previous run).
llvm-svn: 290740
Some incoming changes in ThinLTO will break this test.
Instead of relying on the heuristic to import, we
force the importing to happen with llvm-link.
llvm-svn: 290736
The effect of the bug was that we would incorrectly create summaries
for global and weak values defined in module asm (since we were
essentially testing for bit 1 which is SF_Undefined, and the
RecordStreamer ignores local undefined references). This would have
resulted in conservatively disabling importing of anything referencing
globals and weaks defined in module asm. Added these cases to the test
which now fails without this bug fix.
Fixes PR31459.
llvm-svn: 290610
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.
Differential Revision: https://reviews.llvm.org/D27765
llvm-svn: 290292
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Summary:
We were reinvoking exportGlobalInModule numerous times redundantly.
No need to re-export globals referenced by a global that was already
imported from its module. This resulted in a large speedup in the thin
link for a big application, particularly when importing aggressiveness
was cranked up.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27687
llvm-svn: 289896
Also, udpate the ~60 failing tests in the tree which did
not contain a valid datalayout.
This fixes PR31123. lld will be updated in a following patch,
immediately after this is committed.
Differential Revision: https://reviews.llvm.org/D27082
llvm-svn: 289719
Summary:
The motivation is to support better the -object_path_lto option on
Darwin. The linker needs to write down the generate object files on
disk for later use by lldb or dsymutil (debug info are not present
in the final binary). We're moving this into libLTO so that we can
be smarter when a cache is enabled and hard-link when possible
instead of duplicating the files.
Reviewers: tejohnson, deadalnix, pcc
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D27507
llvm-svn: 289631
Summary:
As discussed on mailing list, for ThinLTO importing we don't need
to import all the fields of the DICompileUnit. Don't import enums,
macros, retained types lists. Also only import local scoped imported
entities. Since we don't currently import any global variables,
we also don't need to import the list of global variables (added an
assert to verify none are being imported).
This is being done by pre-populating the value map entries to map
the unneeded metadata to nullptr. For the imported entities, we can
simply replace the source module's list with a new list containing
only those needed imported entities. This is done in the IRLinker
constructor so that value mapping automatically does the desired
mapping.
Reviewers: mehdi_amini, dexonsmith, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27635
llvm-svn: 289441
Most importantly, we need to hash the relocation model, otherwise we can
end up trying to link non-PIC object files into PIEs or DSOs.
Differential Revision: https://reviews.llvm.org/D27556
llvm-svn: 289024
Summary:
We were doing an optimization in the ThinLTO backends of importing
constant unnamed_addr globals unconditionally as a local copy (regardless
of whether the thin link decided to import them). This should be done in
the thin link instead, so that resulting exported references are marked
and promoted appropriately, but will need a summary enhancement to mark
these variables as constant unnamed_addr.
The function import logic during the thin link was trying to handle
this proactively, by conservatively marking all values referenced in
the initializer lists of exported global variables as also exported.
However, this only handled values referenced directly from the
initializer list of an exported global variable. If the value is itself
a constant unnamed_addr variable, we could end up exporting its
references as well. This caused multiple issues. The first is that the
transitively exported references weren't promoted. Secondly, some could
not be promoted/renamed (e.g. they had a section or other constraint).
recursively, instead of just adding the first level of initializer list
references to the ExportList directly.
Remove this optimization and the associated handling in the function
import backend. SPEC measurements indicate we weren't getting much
from it in any case.
Fixes PR31052.
Reviewers: mehdi_amini
Subscribers: krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26880
llvm-svn: 288446
Maintain the command line resolutions as a map to a list of resolutions
rather than a single resolution, and apply the resolutions in the order
observed. This is not only simpler but allows us to test the scenario where
the two symbols have different resolutions.
Differential Revision: https://reviews.llvm.org/D27285
llvm-svn: 288288
It seems that because ThinLTO does not import the full module,
some invariant of the type mapper are broken.
In Monolithic LTO, we import every globals: when calling
IRLinker::copyFunctionProto() on @foo(), we end-up calling
TypeMapTy::get(FTy) on the type of @foo(), which will map
%0 and record the destination as opaque.
ThinLTO skips this because @foo is not imported and goes directly
to the next stage.
Next we call computeTypeMapping() that map the types for each
globals, and ends up checking for type isomorphism, and may add
type mapping. However it doesn't record if there was an opaque
destination type that was resolved.
Instead of lazily "discovering" opaque type in the destination
module on the go, we change the TypeFinder to eagerly record all
types and not only the named ones.
Differential Revision: https://reviews.llvm.org/D26840
llvm-svn: 287453
Summary:
This will also be added to the LTO API, right now this will
bring ThinLTO on par with Monolithic LTO on Darwin.
Reviewers: anemet
Subscribers: tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26886
llvm-svn: 287450