TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
llvm-svn: 171735
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
constant folding calls. Add the initial tests for this which show that
now instsimplify can simplify blindingly obvious code patterns expressed
with both intrinsics and library calls.
llvm-svn: 171194
are nice and decomposed so that we can simplify synthesized calls as
easily as actually call instructions. The internal utility still has the
same behavior, it just now operates on a more generic interface so that
I can extend the set of call simplifications that instsimplify knows
about.
llvm-svn: 171189
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
In a previous thread it was pointed out that isPowerOfTwo is not a very precise
name since it can return false for powers of two if it is unable to show that
they are powers of two.
llvm-svn: 170093
been used in the first place. It simply was passed to the function and to the
recursive invocations. Simply drop the parameter and update the callers for the
new signature.
Patch by Saleem Abdulrasool!
llvm-svn: 169988
fsub X, +0 ==> X
fsub X, -0 ==> X, when we know X is not -0
fsub +/-0.0, (fsub -0.0, X) ==> X
fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
fsub nnan ninf X, X ==> 0.0
fadd nsz X, 0 ==> X
fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
where nnan and ninf have to occur at least once somewhere in this expression
fmul X, 1.0 ==> X
llvm-svn: 169940
the GEP instruction class.
This is part of the continued refactoring and cleaning of the
infrastructure used by SROA. This particular operation is also done in
a few other places which I'll try to refactor to share this
implementation.
llvm-svn: 169852
This visitor provides infrastructure for recursively traversing the
use-graph of a pointer-producing instruction like an alloca or a malloc.
It maintains a worklist of uses to visit, so it can handle very deep
recursions. It automatically looks through instructions which simply
translate one pointer to another (bitcasts and GEPs). It tracks the
offset relative to the original pointer as long as that offset remains
constant and exposes it during the visit as an APInt offset. Finally, it
performs conservative escape analysis.
However, currently it has some limitations that should be addressed
going forward:
1) It doesn't handle vectors of pointers.
2) It doesn't provide a cheaper visitor when the constant offset
tracking isn't needed.
3) It doesn't support non-instruction pointer values.
The current functionality is exactly what is required to implement the
SROA pointer-use visitors in terms of this one, rather than in terms of
their own ad-hoc base visitor, which was always very poorly specified.
SROA has been converted to use this, and the code there deleted which
this utility now provides.
Technically speaking, using this new visitor allows SROA to handle a few
more cases than it previously did. It is now more aggressive in ignoring
chains of instructions which look like they would defeat SROA, but in
fact do not because they never result in a read or write of memory.
While this is "neat", it shouldn't be interesting for real programs as
any such chains should have been removed by others passes long before we
get to SROA. As a consequence, I've not added any tests for these
features -- it shouldn't be part of SROA's contract to perform such
heroics.
The goal is to extend the functionality of this visitor going forward,
and re-use it from passes like ASan that can benefit from doing
a detailed walk of the uses of a pointer.
Thanks to Ben Kramer for the code review rounds and lots of help
reviewing and debugging this patch.
llvm-svn: 169728
AKA: Recompile *ALL* the source code!
This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.
llvm-svn: 169133
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
Added in first optimization using fast-math flags to serve as an example for following optimizations. SimplifyInstruction will now try to optimize an fmul observing its FastMathFlags to see if it can fold multiply by zero when 'nnan' and 'nsz' flags are set.
llvm-svn: 168648
so that I can (someday) call SE->getSCEV without complaint.
No semantic change intended.
Patch from Preston Briggs <preston.briggs@gmail.com>.
llvm-svn: 168391
This patch moves the isInlineViable function from the InlineAlways pass into
the InlineCostAnalyzer and then changes the InlineCost computation to use that
simple check for always-inline functions. All the special-case checks for
AlwaysInline in the CallAnalyzer can then go away.
llvm-svn: 168300
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221
We may need to change the way profile counter values are stored, but
saturation is the wrong thing to do. Just remove it for now.
Patch by Alastair Murray!
llvm-svn: 166938
Enabled with -verify-scev. This could be extended significantly but hopefully
catches the common cases now. Note that it's not enabled by default in any
configuration because the way it tries to distinguish SCEVs is still fragile and
may produce false positives. Also the test-suite isn't clean yet, one example
is that it fails if a pass drops an NSW bit but it's still present in SCEV's
cached. Cleaning up all those cases will take some time.
llvm-svn: 166786
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168